CHEMISTRY 202
Hour Exam II (Multiple Choice Section)
October 31, 2019
Dr. D. DeCoste

Name \qquad
Signature \qquad
T.A. \qquad
This exam contains 20 questions on 5 numbered pages. Check now to make sure you have a complete exam. Determine the best answer to these questions and enter these on the special answer sheet. Also, circle your responses in this exam booklet.

Each multiple-choice question is worth 3 points (total of 60 points).
The free response section is worth a total of 60 points.

Useful Information:

- Always assume ideal behavior for gases (unless explicitly told otherwise).
- 760 torr $=1.00 \mathrm{~atm}$
- $\mathrm{R}=0.08206 \mathrm{Latm} / \mathrm{molK}=8.314 \mathrm{~J} / \mathrm{Kmol}$
- $\mathrm{K}={ }^{\circ} \mathrm{C}+273$
- $\mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23}$
$\Delta \mathrm{E}=\mathrm{q}+\mathrm{w}$
$\mathrm{H}=\mathrm{E}+\mathrm{PV}$
$\Delta S=\mathrm{q}_{\mathrm{rev}} / \mathrm{T}$
$\mathrm{G}=\mathrm{H}-\mathrm{TS}$

Here are some of the formulas we used/derived in studying thermodynamics. An individual formula may or may not apply to a specific problem. This is for you to decide!

$$
\left.\begin{array}{lll}
\Delta S=\mathrm{nR} \ln \left(\mathrm{~V}_{2} / \mathrm{V}_{1}\right) & \Delta S=\Delta H / \mathrm{T} & \mathrm{C}_{\mathrm{v}}=(3 / 2) \mathrm{R}
\end{array} \mathrm{C}_{\mathrm{p}}=(5 / 2) \mathrm{R}\right)
$$

1. We discussed in lecture how we often assume ΔH for a process/reaction is independent of temperature, even though this is not technically correct. Consider the vaporization of water and methanol. The standard enthalpy of vaporization values for both of these are approximately the same (around $40 \mathrm{~kJ} / \mathrm{mol}$). Given the following data, decide for which substance the enthalpy of vaporization at the boiling point is closer to the standard enthalpy of vaporization (at $25^{\circ} \mathrm{C}$). That is, for which substance is the assumption that $\Delta H_{\text {vaporization }}$ is independent of temperature more accurate?

	Boiling point (1 atm)	Heat capacity of liquid (J/mol $\left.{ }^{\circ} \mathbf{C}\right)$	Heat capacity of vapor (J/mol $\left.{ }^{\circ} \mathbf{C}\right)$
water	$100^{\circ} \mathrm{C}$	75	33
methanol	$65^{\circ} \mathrm{C}$	81	44

a) The assumption is more accurate for methanol.
b) The assumption is more accurate for water.
c) The assumption is equally accurate for both water and methanol.
d) No assumption is necessary $-\Delta H_{\text {vaporization }}$ is independent of temperature for every substance.
2. Consider the reaction $4 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g})$ at $25.0^{\circ} \mathrm{C}$ and the following data:.

$$
\Delta H_{\mathrm{f}}^{\mathrm{f}}(\mathrm{~kJ} / \mathrm{mol})
$$

$\mathrm{NO}_{2}(g)$	33.20
$\mathrm{~N}_{2} \mathrm{O}(\mathrm{g})$	11.30

Determine the value of ΔE° for the reaction as written.
a) $-102.8 \mathrm{~kJ} / \mathrm{mol}$
b) $-105.2 \mathrm{~kJ} / \mathrm{mol}$
c) $-110.2 \mathrm{~kJ} / \mathrm{mol}$
d) $-112.7 \mathrm{~kJ} / \mathrm{mol}$
e) $-117.6 \mathrm{~kJ} / \mathrm{mol}$
3. A sample of water is placed in a coffee cup calorimeter. When an ionic solid is added, the temperature of the water decreases from $21.5^{\circ} \mathrm{C}$ to $20.8^{\circ} \mathrm{C}$ as the solid dissolves. For the dissolving of the solid how many of the following must be true for the dissolving of the solid?

- $\Delta H<0$
- $\Delta S_{\text {univ }}>0$
- $\Delta S_{\text {sys }}<0$
- $\Delta S_{\text {surr }}>0$
a) 0
b) 1
c) 2
d) 3
e) 4

4. Recall in the video on calorimetry that we mentioned that because of similar structures, metals have similar molar heat capacities (all about $25 \mathrm{~J} / \mathrm{mol}^{\circ} \mathrm{C}$). Given this value, determine the identity of a "mystery" metal if a 31.4 g sample of the metal is heated to $100.0^{\circ} \mathrm{C}$, placed in a calorimeter containing 150.0 g of $25.0^{\circ} \mathrm{C}$ water $\left(4.184 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}\right)$, and the final temperature of the water is $26.7^{\circ} \mathrm{C}$.
a) Sodium
b) Aluminum
c) Iron
d) Zinc
e) Silver
5. Given: $\quad 2 \mathrm{Cu}_{2} \mathrm{O}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CuO}(\mathrm{s}) \quad \Delta H^{\circ}=-288 \mathrm{~kJ}$

$$
\mathrm{Cu}_{2} \mathrm{O}(\mathrm{~s}) \rightarrow \mathrm{Cu}(\mathrm{~s})+\mathrm{CuO}(\mathrm{~s}) \quad \Delta H^{\circ}=+11 \mathrm{~kJ}
$$

Calculate the standard enthalpy of formation of $\mathrm{CuO}(\mathrm{s})$.
a) $-299 \mathrm{~kJ} / \mathrm{mol}$
b) $+299 \mathrm{~kJ} / \mathrm{mol}$
c) $-310 . \mathrm{kJ} / \mathrm{mol}$
d) $+310 . \mathrm{kJ} / \mathrm{mol}$
e) $-155 \mathrm{~kJ} / \mathrm{mol}$
6. Consider the reaction as described by the equation $2 \mathrm{H}(g) \rightleftharpoons \mathrm{H}_{2}(g)$. What can we say about its spontaneity?
a) We cannot predict how temperature affects its spontaneity.
b) The reaction is spontaneous at all temperatures above 0 K .
c) The reaction becomes more spontaneous as we lower the temperature.
d) The reaction becomes more spontaneous as we raise the temperature.
e) The reaction is never spontaneous at any temperature.
7. For the reaction $2 \mathrm{AB}(g) \rightleftharpoons \mathrm{A}_{2}(g)+\mathrm{B}_{2}(g), \Delta G^{\circ}=38.3 \mathrm{~kJ}$. If the initial pressures are $400.0 \mathrm{~atm} \mathrm{AB}(g), 0.500 \mathrm{~atm} \mathrm{~A}_{2}(g)$, and $0.200 \mathrm{~atm} \mathrm{~B}_{2}(g)\left(\right.$ all at $\left.25^{\circ} \mathrm{C}\right)$, how will the reaction shift to reach equilibrium?
a) Some AB will be formed (from A_{2} and B_{2}).
b) Some AB will decompose (to yield A_{2} and B_{2}).
c) The system is at equilibrium with the initial conditions.

8,9. Consider the process of heating 1.00 mole of an ideal monatomic gas from a temperature of $25^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$. Determine the following values at the specified condition.
8. Determine ΔH when the temperature is changed at constant volume.
a) 1.93 J
b) 3.22 J
c) 416 J
d) 624 J
e) 1040 J
9. Determine ΔE when the temperature is changed at constant pressure.
a) 1.93 J
b) 3.22 J
c) 416 J
d) 624 J
e) 1040 J

10-14. In the first lecture on thermodynamics, we discussed how the principles of thermodynamics could verify that if placed at room temperature, hot coffee would always cool and ice cream would always melt, and both would end up at room temperature. Let's verify something similar now. Imagine we have about 2 cups of hot water (473 g) at $85^{\circ} \mathrm{C}$ and 250.0 g of ice at $0^{\circ} \mathrm{C}$. Room temperature is constant at $25^{\circ} \mathrm{C}$. Use the following information (assume both heat capacity and $\Delta \mathrm{H}_{\text {fusion }}$ are independent of temperature):

Heat capacity of liquid water $=4.184 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C} \quad \Delta \mathrm{H}_{\text {fusion }}$ of water $=6.02 \mathrm{~kJ} / \mathrm{mol}$
10. Determine $\Delta S_{\text {univ }}$ for the process of the hot water cooling to room temperature.
a) $-363 \mathrm{~J} / \mathrm{K}$
b) $35.4 \mathrm{~J} / \mathrm{K}$
c) $363 \mathrm{~J} / \mathrm{K}$
d) $398 \mathrm{~J} / \mathrm{K}$
e) $761 \mathrm{~J} / \mathrm{K}$
11. Determine $\Delta S_{\text {univ }}$ for the process of the ice melting.
a) $0 \mathrm{~J} / \mathrm{K}$
b) $20.2 \mathrm{~J} / \mathrm{K}$
c) $22.1 \mathrm{~J} / \mathrm{K}$
d) $25.7 \mathrm{~J} / \mathrm{K}$
e) $42.3 \mathrm{~J} / \mathrm{K}$
12. Determine $\Delta S_{\text {univ }}$ for the process of the water from the ice that melted becoming room temperature.
a) $-91.7 \mathrm{~J} / \mathrm{K}$
b) $3.90 \mathrm{~J} / \mathrm{K}$
c) $87.8 \mathrm{~J} / \mathrm{K}$
d) $91.7 \mathrm{~J} / \mathrm{K}$
e) $179 \mathrm{~J} / \mathrm{K}$
13. Which of the following statements is true concerning the relative magnitudes (NOT signs) of $\Delta \mathrm{S}$ and $\Delta S_{\text {surr }}$?
a) For the hot water cooling to room temperature, $\Delta \mathrm{S}>\Delta S_{\text {surr }}$.
b) For the ice melting, $\Delta \mathrm{S}=\Delta S_{\text {surr }}$.
c) For the ice melting, $\Delta S_{\text {surr }}>\Delta \mathrm{S}$.
d) For the water from the melted ice to reach room temperature, $\Delta \mathrm{S}>\Delta S_{\text {surr }}$.
e) For the total process (all $\mathrm{H}_{2} \mathrm{O}$ becoming room temperature), $\Delta \mathrm{S}=\Delta S_{\text {surr }}$.
14. Imagine a situation in which, while the room remained at $25^{\circ} \mathrm{C}$, the temperature of the hot water reached $26^{\circ} \mathrm{C}$ and the ice eventually became liquid water at $24^{\circ} \mathrm{C}$. How would $\Delta S_{\text {univ }}$ for this situation compare to $\Delta S_{\text {univ }}$ for all of the water reaching $25^{\circ} \mathrm{C}$?
a) $\Delta S_{\text {univ }}$ would be negative because this process would not be spontaneous.
b) $\Delta S_{\text {univ }}$ would be the same because it is a state function.
c) $\Delta S_{\text {univ }}$ would still be positive but its value would be lower because reaching different temperatures would be less spontaneous.
d) $\Delta S_{\text {univ }}$ would be positive but its value would be higher because according to the second law, $\Delta S_{\text {univ }}$ tends toward a maximum.
e) $\Delta S_{\text {univ }}$ would be zero.

15-20. Recall the videos in which we discussed the isothermal expansion of an ideal monatomic gas against a constant pressure, followed by its isothermal compression to the same conditions of pressure and volume.
15. Which of the following best describes the value of ΔH for the expansion?
a) Because the expansion is isothermal, $q=0$, and because the gas expands against a constant pressure, $q=\Delta H$, so $\Delta H=0$.
b) If this were a free expansion, ΔH would equal zero. But because work is done by the system, ΔH must be less than zero.
c) By expanding, the gas is doing work, and in order to do work, heat must flow into the system, meaning $q>0$. Because $q>0$, and because $\Delta H=q$ (since external pressure is constant), $\Delta H>0$.
d) We know $H=E+P V$. Because the expansion is isothermal, $\Delta E=0$, and because the gas is expanding, $P \Delta V>0$, so $\Delta H>0$.
e) Because the expansion is isothermal, ΔH must equal zero, even though the value of q is not zero.
16. Which of the following is the best response to a person who says, "I know that the value of ΔS for the compression is zero, but I can't figure out why"?
a) It is because the expansion is isothermal, which means $\Delta H=0$. And because $\Delta S=\Delta H / \mathrm{T}$, $\Delta S=0$.
b) It is because $\Delta S={ }_{\mathrm{n}}^{\mathrm{p}} \mathrm{ln}\left(\mathrm{T}_{2} / \mathrm{T}_{1}\right)$. Since the process is isothermal, $\mathrm{T}_{2}=\mathrm{T}_{1}$, and because $\ln (1)=0, \Delta S=0$.
c) It is because $\Delta S=n R \ln \left(\mathrm{~V}_{2} / \mathrm{V}_{1}\right)$ and because $\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$. So, $\Delta S=\mathrm{nR} \ln \left(\mathrm{P}_{1} / \mathrm{P}_{2}\right)$. Since the gas is being compressed under a constant pressure, $\mathrm{P}_{2}=\mathrm{P}_{1}$, and because $\ln (1)=0$, $\Delta S=0$.
d) You are incorrect. The entropy decreases for the compression $(\Delta S<0)$ because the volume is decreasing.
e) You are incorrect. The entropy increases $(\Delta S>0)$ for every part of this process since each step is spontaneous.
17. Which of the following best describes the values of ΔG for the expansion, compression, and overall?
a) For the expansion, $\Delta G=0$, for the compression $\Delta G=0$, and for the overall process, $\Delta G=0$.
b) For the expansion, $\Delta G<0$, for the compression $\Delta G>0$, and for the overall process, $\Delta G<0$.
c) For the expansion, $\Delta G>0$, for the compression $\Delta G<0$, and for the overall process, $\Delta G<0$.
d) The signs for can vary for the compression and expansion, but for the overall process, $\Delta G<0$.
e) For the expansion, $\Delta G<0$, for the compression $\Delta G>0$, and for the overall process, $\Delta G=0$.
18. Consider that we carry out this process as a one-step isothermal expansion followed by a one-step isothermal compression of an ideal gas (again, to the original conditions of pressure and volume). What is the ratio (R) of work during the compression to work during the expansion?

That is, $\frac{\text { work during the compression }}{\text { work during the expansion }}=\mathrm{R}$
a) $\mathrm{R}<-1$
b) $\mathrm{R}=-1$
c) $-1<$ R <1
d) $R=1$
e) $R>1$
19. Which of the following two quantities have different magnitudes from each other for both the expansion and compression, but have the same signs and magnitudes as each other for the overall process of expansion and compression?
a) q and w
b) ΔE and ΔH
c) $\Delta S_{\text {univ }}$ and ΔG
d) $\Delta S_{\text {surr }}$ and $\Delta S_{\text {univ }}$
e) ΔS and $\Delta S_{\text {univ }}$
20. How many of the following quantities are zero for the overall process of expansion and compression, but nonzero for the expansion and nonzero for the compression?

$$
q, w, \Delta E, \Delta H, \Delta S, \Delta S_{\text {surr }}, \Delta S_{\text {univ }} \text {, and } \Delta G
$$

a) 0
b) 2
c) 4
d) 6
e) 8

