Chemistry 204: Quiz #8

- 1. Which of the following is the best oxidizing agent?
 - a) Cl_2 b) Fe c) Na d) Na^+ e) F^-

2. Consider a galvanic cell at 25°C made by placing a tin electrode in 500.0 mL of 1.00*M* $\operatorname{Sn}^{2+}(aq)$ in one side and a lead electrode in 500.0 mL of 1.00*M* $\operatorname{Pb}^{2+}(aq)$ in the other side. Determine the concentration of $\operatorname{Sn}^{2+}(aq)$ when the cell is "dead".

a) 0.629 M b) 0.808 M c) 1.19 M d) 1.37 M e) 2.00M

- 3. Each of the following cells has $1.0 \ge 10^{-7} M \operatorname{Cu}^{2+}(aq)$ in one side. Which of the following cells has the **lowest** potential?
 - a) A cell made with copper and zinc such that the "copper side" has a copper electrode and $1.0 \ge 10^{-7} M \operatorname{Cu}^{2+}(aq)$, and the "zinc side" has a zinc electrode and $1.0 M \operatorname{Zn}^{2+}(aq)$.
 - b) A cell made with copper and silver such that the "copper side" has a copper electrode and $1.0 \ge 10^{-7} M \operatorname{Cu}^{2+}(aq)$, and the "silver side" has a silver electrode and $1.0 M \operatorname{Ag}^{+}(aq)$.
 - c) A copper concentration cell which has two copper electrodes, $1.0 M \text{Cu}^{2+}(aq)$ in one side, and $1.0 \times 10^{-7} M \text{Cu}^{2+}(aq)$ in the other side.
 - d) A cell made with copper and cadmium such that the "copper side" has a copper electrode and $1.0 \ge 10^{-7} M \operatorname{Cu}^{2+}(aq)$, and the "cadmium side" has a cadmium electrode and $1.0 M \operatorname{Cd}^{2+}(aq)$.
 - e) At least two of the above (a-d) have the same lowest potential.
- 4. Consider the reaction between Ni(*s*) and HCl(*aq*). If we react an excess of nickel metal in a solution of hydrochloric acid, what is the ratio of $[H^+]/[Ni^{2+}]$ when the system reaches equilibrium?

a) 1.6×10^{-8} b) 1.3×10^{-4} c) 7.8×10^{3} d) 6.07×10^{7} e) Cannot be determined.

- 5, 6. Recall the demonstration in which we placed a piece of copper metal in an aqueous solution of silver nitrate. Suppose instead we placed a 6.000 g piece of copper in a beaker with 100.0 mL of 0.1000*M* Au(NO₃)₃(*aq*).
- 5. Determine the concentration of $Cu^{2+}(aq)$ at equilibrium.

a) $1.2 \ge 10^{-7} M$ b) $3.5 \ge 10^{-4} M$ c) 0.050 M d) 0.10 M e) 0.15 M

6. Determine the concentration of $Cu^+(aq)$ at equilibrium.

a) $1.2 \ge 10^{-7} M$ b) $3.5 \ge 10^{-4} M$ c) 0.050 M d) 0.10 M e) 0.15 M

Chemistry 204: Quiz #8

- 7, 8. Consider a galvanic cell at 25°C made by placing a zinc electrode in 500.0 mL of $0.100M \operatorname{ZnCl}_2(aq)$ in one side, and a copper electrode in 500.0 mL of $0.0100M \operatorname{CuSO}_4(aq)$ in the other side.
- 7. Determine the potential of the cell.
 - a) 1.04 V b) 1.07 V c) 1.10 V d) 1.13 V e) 1.16 V
- 8. Calculate $[Cu^{2+}(aq)]$ after this cell was allowed to produce an average current of 1.00 amp for 3 minutes and 14 seconds.
 - a) 0.0040*M* b) 0.0060*M* c) 0.0080*M* d) 0.0120*M* e) 0.0140*M*
- 9. A concentration cell is one for which we have the same components in each side of the cell. For this problem, consider a lead concentration cell as shown below:

- a. Answer the following questions concerning this cell:
 - What is the value of ε° for this cell? Why?
 - How do we make a concentration cell like the one above that has a potential? What is the driving force for the cell?
 - To have a cell potential of at least 0.1V, what must be true about the relative concentrations of the Pb²⁺ in each side? Provide **quantitative support**.
 - Write the half-reaction that occurs in each side of the cell and explain how they correspond to the relative concentration of Pb²⁺ in each side.
- b. Suppose we have the following cell, in which we have lead (Pb) electrodes, $1.0M \text{ Pb}^{2+}$ in one side, and an excess of PbCl₂(s) in equilibrium with its ions in the other side:

You measure the cell potential and find it to be 0.053V. Determine:

- The concentration of Pb^{2+} in the right side of the cell. (in molarity).
- The K_{sp} value for PbCl₂.
- The standard reduction potential of $PbCl_2(s) + 2e^- \rightarrow Pb(s) + 2Cl^-(aq)$

Chemistry 204: Quiz #8

9. c. We saw in lecture, the videos, and the textbook that concentration affects the potential of a cell. If we increase the concentration of the reactant and decrease the concentration of the product, our knowledge of equilibrium tells us that the potential will be increased. Because we cannot get a lower concentration than 0*M*, consider the following cell in which we have lead (Pb) electrodes, 1.0*M* Pb²⁺ in one side, and distilled water in the other side:

Given that to measure a potential we need a flow of electrons through the wire from one side of the cell to the other, **determine the maximum measured potential** of this cell. Assume the volume of each side is 1.00L. **Show all work.**

KEY:

MC: 1. a, 2. d, 3. c, 4. e, 5. e, 6. b, 7. b. 8. c

9. a. See lectures, videos, and textbook; b. $[Pb^{2+}] = 0.016085 M$, $K_{sp} = 1.6648 \times 10^{-5}$, $\varepsilon^{\circ} = -0.27$; c. $\varepsilon = 0.70 \text{ V}$