Multiple Choice – Three (3) points each

- 1. Which of the following statements is **false** regarding electrochemical cells?
 - a. Galvanic cells utilize spontaneous oxidation-reduction reactions.
 - b. Electrolytic cells are based on oxidation-reduction reactions having positive ΔG values.
 - c. The cell potential (E_{cell}) in a concentration cell is produced by constructing a galvanic cell where both the anode and cathode compartments contain the same components but at different ion concentrations.
 - d. When the concentration of a reactant ion in a galvanic cell is increased, the cell potential (E_{cell}) decreases.
 - e. Batteries are examples of galvanic cells.
- 2. Consider the galvanic cell based on the following standard oxidation half-reactions:

Which of the following statements (a-e) is **true** about the galvanic cell at standard conditions?

- a. Cr^{3+} is the oxidizing agent in the overall cell reaction.
- b. Manganese (Mn) is oxidized in the overall cell reaction.
- c. The oxidation state of chromium in $Cr_2O_7^{2-}$ is +5.
- d. 12 electrons are transferred in the best balanced cell reaction.
- e. The coefficient in front of H₂O in the best balanced cell reaction is 3.
- Hydrogen-oxygen fuel cells are utilized in some cities to produce electricity. The fuel 3. cell reaction and the standard cell potential are:

$$2 H_2(g) + O_2(g) \rightarrow 2 H_2O(1)$$
 $E^{\circ} = 1.23 \text{ V}$

Calculate the maximum amount of work (w_{max}) this fuel cell reaction could produce for the production of 2 mol of $H_2O(1)$ assuming standard concentrations and $T = 25^{\circ}$ C. Note: $w_{max} = \Delta G$.

- a. -948 kJ

- b. -237 kJ c. -475 kJ d. -119 kJ
- e. -82.5 kJ
- Cadmium sulfide (CdS) is used in some semiconductor applications. Calculate the value 4. of the solubility product (K_{sp}) for CdS given the following standard reduction potentials.

$$CdS + 2e^{-} \rightarrow Cd + S^{2-}$$
 $E^{\circ} = -1.21 \text{ V}$
 $Cd^{2+} + 2e^{-} \rightarrow Cd$ $E^{\circ} = -0.40 \text{ V}$

- a. 3.9×10^{-28} b. 3.3×10^{-55} c. 2.1×10^{-14}
- d. 3.0×10^{54} e. 2.6×10^{22}

5. Consider the following standard reduction potentials:

	E° (volts)
$F_2 + 2e^- \rightarrow 2 F^-$	2.87
$Ag^+ + e^- \rightarrow Ag$	0.80
$Cu^{2+} + 2e^{-} \rightarrow Cu$	0.34
$Pb^{2+} + 2e^{-} \rightarrow Pb$	-0.13
$Ni^{2+} + 2e^- \rightarrow Ni$	-0.23

Assuming standard conditions, copper (Cu) will spontaneously reduce which of the following?

- a. Ag and F⁻
- b. Ag⁺ and F₂ c. Pb and Ni

- d. Pb⁺ and Ni²⁺
- e. none of these

6. Consider the following reduction potentials:

When molten NaCl is electrolyzed, Na(s) and Cl₂(g) are produced. When aqueous NaCl is electrolyzed, $H_2(g)$ and $Cl_2(g)$ are produced. Which of the following statements **best** explains why H₂(g) is produced instead of Na(s) in an aqueous solution of NaCl?

- a) H₂O is more easily reduced relative to Na.
- b) H₂O is more easily oxidized relative to Na.
- c) H₂O is more easily reduced relative to Na⁺.
- d) H₂O is more easily oxidized relative to Na⁺.
- 7. Which of the following statements if **false**?
 - a. Corrosion involves the oxidation of iron.
 - b. Corrosion is an example of an electrolytic cell.
 - c. Sacrificial metals (or cathodic protection) utilize metals that are more easily oxidized than iron.
 - d. Dry climates tend to have less of a problem with corrosion as compared to climates with ample moisture.
 - e. Paint or protective oxides can help prevent corrosion by eliminating contact of the iron with $O_2(g)$.
- 8. Which of the following has a bond order of 1 and is paramagnetic?
 - a. H₂
- b. Li₂
- c. He₂
- d. H_2^+
- e. B_2

Histidine, one of the 20 naturally occurring amino acids, has the following skeletal structure. Complete a Lewis structure for histidine and answer the following two questions.

- 9. How many π bonds are in histidine?
 - a. 0
- b. 1
- c. 2
- d. 3 e. 4
- Which of the following statements is **false** concerning the structure of histidine? 10.
 - a. There are four carbon atoms in histidine that are sp² hybridized.
 - b. The bond angle about the oxygen atom labeled 1 is approximately 109°.
 - c. The bond angles about the carbon atom labeled 2 is approximately 120°.
 - d. There are 7 lone pairs of electrons in the complete Lewis structure.
 - e. All of the nitrogen atoms are sp³ hybridized.
- A student incorrectly named a compound 4-ethyl-2,3-diisopropylpentane. What is the 11. correct IUPAC name for this compound?
 - a. 2,3-diisopropyl-4-methylhexane
 - b. 4,5-diisopropyl-3-methylhexane
 - c. 4-isopropyl-3,5,6-trimethylheptane
 - d. 4-isopropyl-2,3,5-trimethylheptane
 - e. 2,3,5-trimethyl-4-sec-butylhexane
- 12. Which of the following compounds has at least one carbon atom with sp hybridization?
 - a. 1-chloro-4-methyl-2-heptyne
 - b. cyclopropane
 - c. 3-methyl-1-cyclopentene
 - d. 2-hexene
 - e. 3,4-dibromo-2,3,4,5-tetramethylhexane

- 13. Which of the following compounds is least soluble in water?
 - a. CO₂
- b. H₂CO
- c. NH₃
- d. SO₂
- e. CO
- 14. Which of the following compounds has a trigonal pyramid molecular structure (shape)?
 - a. CO₂
- b. H₂CO
- c. NH₃
- $d. SO_2$
- e. CO
- 15. Which of the following compounds contain two and **only** two chiral carbon atoms?

a.

b.

НО

- HOCH₂. -CH₂OH
- H_3C
- Η Η C1 e.
- 16. Which of the following statements is **false** concerning benzene, C₆H₆?
 - a. Aromatic compounds are compounds based on benzene rings.
 - b. Benzene exhibits 109° bond angles.
 - c. Benzene is, in general, less reactive than alkenes due to the delocalized π electrons in benzene.
 - d. Benzene cannot exhibit cis/trans isomerism.
 - e. Benzene has two equivalent (resonance) Lewis structures.

17. Which of the following are the same molecule (are conformations of each other)?

$$\begin{array}{c} \text{CH}_3 \\ \text{IV. } \text{CH}_3\text{CHCH}_2 \\ \text{CH}_3\text{CH}_2\text{CHCH}_3 \\ \end{array} \quad \begin{array}{c} \text{CH}_3 \\ \text{V. } \text{CH}_3\text{CH} \\ \text{CH}_2\text{CHCH}_3 \\ \text{CH}_2\text{CHCH}_3 \\ \end{array}$$

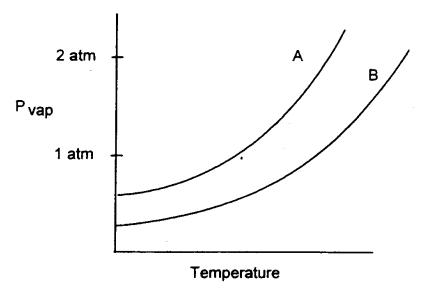
- a. I and III
- b. II and III
- c. I, III and V

- d. I, IV, and V
- e. I, II, and IV
- 18. Consider the four possible monochlorination products (C₅H₉Cl) formed from the following reaction. How many of the monochlorination products can exhibit cis/trans isomerism?

$$CH_3$$
 $H + Cl_2$ light $C_5H_9C1 + HC1$

- a. 0
- b. 1
- c. 2
- d. 3
- e. 4 (all)
- 19. When HCl is reacted with 1-pentene, two different products are possible. Which of the following statements **best** explains why 2-chloropentane is the major product of this reaction and 1-chloropentane is the minor product?
 - a. The tertiary carbocation intermediate is more stable than the secondary carbocation intermediate.
 - b. The tertiary carbocation intermediate is more stable than the primary carbocation intermediate.
 - c. The secondary carbocation intermediate is more stable than the primary carbocation intermediate.

20. Which of the following compounds can exhibit cis-trans isomerism?


I.
$$CH_2 = CH = CH_2CH_2CH_3$$
 II. $CH_3CH_2 = C = C = CH_3$

- a. I, II, III, and IV
- b. III and IV
- c. I, III, and IV

d. III only

e. I and IV

Below is a plot of vapor pressure vs. temperature for two different substance A and B. 21.

Which of the following statements is **false** concerning this plot?

- a. As temperature increases, the vapor pressure of substance B increases.
- b. Substance A has stronger intermolecular forces than substance B.
- c. Substance A has a lower normal boiling point than substance B.
- d. For substance A, the boiling point at 2 atm external pressure is higher than the boiling point at 1 atm external pressure.

Which of the following compounds has free rotation about every bond in the molecule? 22.

- a. 1-chloro-4-methyl-2-heptyne
- b. cyclopropane

c. 3-methyl-1-cyclopentene

- d. 2-hexene
- e. 3,4-dibromo-2,3,4,5-tetramethylhexane