CHEMISTRY	104
Hour Exam II	
Summer 2025	

Name	
------	--

Multiple Choice Questions

GRADING:	MC	(75)
	26	(9)
	27	(10)
	28	(11)
	29	(12)
	30	(9)
	31	_ (12)
	32.	(11)
Total		1/10

For best results please don't leave blanks on the objective or written-out problems. Please show all steps or logic on the written problems so partial credit can be awarded.

MULTIPLE CHOICE - three (3) points each

- 1. Which of the following statements (a-d) is **true**?
 - a) Good reducing agents have large, positive reduction potentials.
 - b) The overall reaction in a galvanic cell has a positive free energy change ($\Delta G > 0$).
 - c) The overall reaction in an electrolytic cell has a positive cell potential ($E_{cell} > 0$).
 - d) In a galvanic cell, the anode is where reduction occurs.
 - e) None of the above statements (a-d) is true.

Use the following table of standard reduction potentials to answer the next two questions.

	E° (volts)
$Ag^{2+} + e^{-} \rightarrow Ag^{+}$	+1.99
$Cl_2 + 2e^- \rightarrow 2 Cl^-$	+1.36
$Ag^+ + 2e^- \rightarrow Ag$	+0.80
$Cu^{2+} + 2e^{-} \rightarrow Cu$	+0.34
$Pb^{2+} + 2e^{-} \rightarrow Pb$	-0.13
$Ni^{2+} + 2e^- \rightarrow Ni$	-0.23
$Fe^{2+} + 2e^{-} \rightarrow Fe$	-0.44
$Mg^{2+} + 2e^- \rightarrow Mg$	-2.37

- 2. The ionic compound AgCl₂ is unstable. Which of the following best explains why AgCl₂ is unstable?
 - a) Ag^{2+} will oxidize Cl^- making $AgCl_2$ unstable.
 - b) Ag²⁺ will oxidize Cl₂ making AgCl₂ unstable.
 - c) Ag⁺ will oxidize Cl₂ making AgCl₂ unstable.
 - d) Ag⁺ will oxidize Cl⁻ making AgCl₂ unstable.
- 3. Which of the following can act as a sacrificial metal to protect iron from corrosion?
 - a) Ni
- b) Ag
- c) Pb
- d) Cu
- e) Mg
- 4. Consider the concentration cell: Al | Al $^{3+}$ (0.10 M) || Al $^{3+}$ (1.5 M) | Al

What effect would decreasing the $[Al^{3+}]$ at the cathode have on E_{cell} ?

- a) No effect.
- b) E_{cell} would decrease.
- c) E_{cell} would increase.

- 5. A galvanic cell has a K value equal to 1.00. The cell reaction:
 - a) has a negative ΔG° value.
 - b) has $\Delta G^{\circ} = 0$.
 - c) has a positive E_{cell} value.
 - d) has a negative E^o_{cell} value.
 - e) None of these answers (a-d) are true.
- 6. Given:

	$E^{\circ}(V)$
$O_2 + 4 H^+ + 4e^- \rightarrow 2 H_2O$	+0.82
$I_2 + 2e^- \rightarrow 2 I^-$	+0.54
$2 \text{ H}_2\text{O} + 2\text{e}^- \rightarrow \text{H}_2 + 2 \text{ OH}^-$	-0.41
$Cr^{3+} + 3e^- \rightarrow Cr$	-0.73

Consider the electrolysis of an aqueous solution of chromium iodide (CrI₃). Using the potentials above, which of the following statements describes what should be observed? Assume no overvoltage and assume standard conditions.

- a) I⁻ will be produced at one electrode and H₂O will be produced at the other electrode.
- b) I₂ will be produced at one electrode and Cr will be produced at the other electrode.
- c) I₂ will be produced at one electrode and H₂ and OH⁻ will be produced at the other electrode.
- d) O_2 and H^+ will be produced at one electrode Cr will be produced at the other electrode.
- e) O₂ and H⁺ will be produced at one electrode and H₂ and OH⁻ will be produced at the other electrode.
- 7. Which of the following statements is **false**?
 - a) Driving on roads which have been salted can increase the severity of corrosion.
 - b) Protective oxides can prevent corrosion by eliminating contact of the metal with oxygen and moisture.
 - c) Corrosion involves the oxidation of iron.
 - d) Corrosion is an example of an electrolytic process.
 - e) In general, cars rust more easily in the humid Midwest than in the arid (dry) southwest.

8. Consider a galvanic cell based on the following half-reactions:

$$E^{\circ}$$
 (V)
 $Tl^{+} + e^{-} \rightarrow Tl$ -0.34
 $Au^{3+} + 3e^{-} \rightarrow Au$ 1.50

Calculate the cell potential at 25°C when $[Au^{3+}] = 1.0 \times 10^{-2} M$ and $[Tl^{+}] = 1.0 \times 10^{-4} M$.

- a) 2.04 V
- b) 1.84 V
- c) 1.64 V
- d) 0.96 V e) 1.36 V
- 9. Arrange the following substances in order of increasing vapor pressure at 25°C (from lowest to highest).

I.
$$CH_2$$
— CH_2 II. NaCl III. $CH_3CH_2CH_2OH$

IV.
$$CH_3CH_2CH_3$$
 V. CH_3CCH_3

- a) II < IV < V < III < I b) IV < V < III < I < II c) IV < III < I < V < II
- d) II < I < IIII < V < IV e) IV < V < IIII < III < I
- 10. Which of the following statements about alkanes and cycloalkanes is **false**?
 - a) Cyclobutane exhibits ring strain since the observed bond angles are smaller than the preferred 109°.
 - b) Cycloalkanes are structural isomers of alkanes.
 - c) All carbons in alkanes are sp³ hybridized.
 - d) Cycloalkanes can exhibit cis/trans isomerism.
 - e) Alkanes can rotate about every bond.

11. What is the IUPAC name for the following compound? (ignore cis/trans isomers)

is the TOPAC name for the following compound? (19)
$$CH_3 \qquad CH_2CH_3$$

$$CH_3 \qquad CH_2CH_2$$

$$CH_2CH_3$$

- a) 2-ethyl-4,6-dimethyl-1,4-octadiene
- b) 2,6-diethyl-4-methyl-1,4-heptadiene
- c) 7-ethyl-3,5-dimethyl-4,7-octadiene
- d) 2,6-diethyl-4-methyl-3,6-heptadiene
- e) 3,5,7-trimethyl-4-nonene

Complete the Lewis structure for the following organic molecule, then answer the next four questions.

$$H - N - C - C - C - C - H$$

- How many π bonds does this molecule have? 12.
 - a) 0

- b) 1 c) 2 d) 3 e) 4
- What is the bond angle about the oxygen atom labeled 1? 13.
 - a) 60°

- b) 90° c) 109° d) 120° e) 180°
- How many nitrogen and carbon atoms are sp² hybridized? 14.

- a) 1 b) 2 c) 3 d) 4
- e) 5 (Five nitrogen and carbon atoms in this molecule exhibit sp² hybridization.)
- How many bonds in the molecule are formed from overlap of a sp³ hybrid orbital from 15. one atom with a sp³ hybrid orbital from another atom?
 - a) 0
- b) 1

- c) 2 d) 3 e) 4

- 16. Which of the following organic compounds will decolorize a bromine solution?
 - a) benzene
 - b) 2-methylbutane
 - c) cycloheptane
 - d) trans-4-methyl-2-pentene
 - e) toluene
- 17. In class, the absent-minded professor carelessly named an organic compound, 2-3dibromo-2,3-diisopropylbutane. An ever alert student pointed out, that although you could draw the correct structure from the professor's name, the name was not the correct IUPAC name. What is the correct IUPAC name for this compound?
 - a) 2,3-dibromo-1,1,2,3,4,4-hexamethylbutane
 - b) 3,4-dibromo-2,3-dimethyl-4-isopropylpentane
 - c) 3,4-dibromo-2-methyl-5-isopropylhexane
 - d) 3,4-dibromo-2,3,4,5-tetramethylhexane
 - e) 2,3-dibromo-5-methyl-2-isopropylpentane
- Consider the combustion reaction of toluene. How many molecules of O₂ are required to 18. react with each molecule of toluene?
 - a) 2.5
- b) 5 c) 7.5 d) 8 e) 9
- How many different monochlorination products can be produced for the reaction shown 19. below?

$$\begin{array}{c} CH_3 \\ | \\ CH_3 - CH_2 - CH_2 - CH_3 + 1 Cl_2 & \xrightarrow{hv} ? + HCl \end{array}$$

- a) 2

- b) 3 c) 4 d) 5 e) 6
- Bromochloropropene (C₃H₄BrCl) exhibits structural, geometric and optical isomerism. 20. How many of the eight noncyclic structural isomers for bromochloropropene are optically active? Note: ignore cyclic structures.
 - a) 1
- b) 2 c) 3 d) 4 e) 5

21. Which answer has the correct fill in the blanks to make the following statement correct?

Ethane molecules interact by \underline{I} , whereas, methanol (CH₃OH) molecules interact mainly by \underline{II} . London dispersion forces are \underline{III} than hydrogen bonding interactions in molecules of similar size. This explains why the boiling point of methanol (molar mass = 32 g/mol) is \underline{IV} the boiling point of ethane (molar mass = 30 g/mol).

- a) I London dispersion forces, II ionic interactions, III weaker, IV higher than
- b) I London dispersion forces, II hydrogen bonding, III weaker, IV higher than
- c) I London dispersion forces, II hydrogen bonding, III stronger, IV less than
- d) I London dispersion forces, II dipole-dipole, III stronger, IV less than
- e) I London dispersion forces, II dipole-dipole, III weaker, IV –less than

22. Consider the following compounds:

I.
$$H_3C$$
 $C = C$ CH_3 $CH_$

IV.
$$_{\text{H}_3\text{C}}$$
 $_{\text{CH}_3}$ $\overset{\text{V. } \text{CH}_2\text{F}}{\underset{\text{H}_3\text{C}}{\longleftarrow}}$ $_{\text{CH}_2}$

Which of the following statements is **false**?

- a) I and IV are structural isomers of each other.
- b) II is a cis isomer.
- c) I and III are structural isomers of each other.
- d) I and II are geometrical isomers of each other.
- e) I and V are structural isomers of each other.

- 23. Which of the following statements (a-d) is **false**?
 - a) Benzene based compounds must have some carbons that are sp hybridized.
 - b) The π bonds in alkenes, alkynes and benzene are formed from overlap of unhybridized p atomic orbitals.
 - c) Benzene based compounds are, in general, more stable than alkenes due to the delocalized π electrons found in benzene and its derivatives.
 - d) Alkenes, alkynes and benzene all have at least one bond that does not rotate.
 - e) None of the above statements (a-d) are false.
- 24. Which of the following diatomic molecules/ions is **least** likely to form?
 - a) Be₂
- b) H₂
- c) He_2^+
- d) H_2^-
- e) Li₂
- 25. Which of the following statements is **false** regarding molecular orbital theory?
 - a) Bonding molecular orbitals are lower in energy than the atomic orbitals used to form them.
 - b) Diatomic molecules/ions having an odd number of electrons must be paramagnetic.
 - c) Antibonding molecular orbitals in diatomic molecules/ions have electron density mainly outside of the space between the two nuclei.
 - d) Electrons never occupy antibonding molecular orbitals.
 - e) The number of molecular orbitals formed is equal to the number of atomic orbitals used to construct them.

USEFUL CONSTANTS AND RELATIONS:

$$N = 6.022 \times 10^{23}$$
; $PV = nRT$

$$R = 8.3145 \text{ J/mol} \cdot \text{K} = 0.08206 \frac{\text{L} \cdot \text{atm}}{\text{mol} \cdot \text{K}}$$

$$\Delta G = \Delta G^{\circ} + RT \ln Q; \quad \Delta G = w_{max}$$

$$K = {}^{\circ}C + 273$$

$$F = 96.485 \text{ Coul/mol e}^{-}$$

$$E = E^{\circ} - \frac{RT}{nF} ln Q$$

$$E = E^{\circ} - \frac{0.0591}{n} \log Q$$
 (at 25°C)

$$\Delta G_{rxn}^{o} = \Sigma \Delta G_{f, products}^{o} - \Sigma \Delta G_{f, reactants}^{o}$$

$$\Delta S_{univ} = \frac{-\Delta G}{T}$$

$$\Delta S_{surr} = \frac{-\Delta H}{T}$$

$$\Delta G = -nFE$$

$$\Delta G^{\circ} = -nFE^{\circ}$$

$$\Delta G^{\circ} = -RT \ln K$$

$$\Delta G = \Delta H - T\Delta S$$

$$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$$

$$E^{\circ} = \frac{0.0591}{n} \log K \text{ (at 25°C)}$$

$$Amp = Coul/sec$$

$$k = A e^{-E_a/RT}$$

% dissociation =
$$\frac{\text{amount dissociated}}{\text{initial concentration}} \times 100$$

$$K_w = K_{a \bullet} K_b = [H^+][OH^-]$$

$$K_w = 1.0 \times 10^{-14}$$
 (at 25°C)

$$pH + pOH = 14.00$$

$$pK_a + pK_b = 14.00$$

$$pH = -log[H^+], [H^+] = 10^{-pH}$$

$$pK_a = -log K_a$$

$$pH = pK_a + log \frac{[base]}{[acid]}$$

$$\begin{array}{ccc} \underline{Acid} & K_a \\ HF & 7.2 \times 10^{-4} \\ HC_2H_3O_2 & 1.8 \times 10^{-5} \\ HCN & 6.2 \times 10^{-10} \end{array}$$

$$\begin{array}{ll} \underline{Base} & K_b \\ NH_3 & 1.8 \times 10^{-5} \\ H_2NNH_2 & 3.0 \times 10^{-6} \end{array}$$

$$pH = \frac{pK_{a_1} + pK_{a_2}}{2}$$

Zero order reaction:

$$[A] - [A]_0 = -kt$$

 $t_{1/2} = \frac{[A]_0}{2!}$

First order reaction:

$$ln[A] - ln[A]_0 = -kt$$
 or

$$\ln\left(\frac{[A]}{[A]_0}\right) = -kt$$

$$t_{1/2} = \frac{0.693}{k}$$

Second order reaction:

$$\frac{1}{[A]} - \frac{1}{[A]_0} = kt$$

$$t_{1/2} = \frac{1}{k[A]_0}$$

PERIODIC TABLE OF THE ELEMENTS

Ne 20.18 Ar 39.95 Kr 83.80 Rn (222) | 35 | Br | 79.90 Cl 35.45 19.00 **7A** I Se 78.96 O 16.00 S 32.07 Wy Wy Sb 121.8 Bi 209.0 P 30.97 N 14.01 As 74.92 **5A** Si 28.09 32 Ge 72.59 Sn 118.7 C 12.01 Pb 207.2 A In 114.8 Al 26.98 B 10.81 Ga 69.72 Ti 204.4 3A Zn 65.38 Cd 112.4 Hg 200.6 Ag 107.9 Au 197.0 Cu 63.55 Ni 58.69 Pd 106.4 Pt 195.1 atomic mass Rh 102.9 Ir 192.2 109 Mt Co 58.93 Fe 55.85 Os 190.2 108 Hs Ru 101.1 Mn 54.94 Re 186.2 107 Bh Fe 55.85 Tc (98) Cr 52.00 Mo 95.94 W 1183.9 106 Sg Ta 180.9 V 50.94 Nb 92.91 number atomic . | 72 Hf 178.5 Ti 47.88 Zr 91.22 La* 138.9 Sc 44.96 Y 88.91 Ca 40.08 Be 9.012 Sr 87.62 Ba 137.3 Mg 24.31 **2A** Na 22.99 K 39.10 Rb 85.47 55 Cs 132.9 1.008 6.941 1A

lanthanides*		58		09	61	62	63	64	65		29	89	69	70	71
	1	Ce		PN	Pm	Sm	Eu	РŊ	Tb		Но	Er	Tm	Yb	Lu
		140.1		144.2	(145)	150.4	152.0	157.3	158.9		164.9	167.3	168.9	173.0	175.0
actinides [‡]		90 91		92	93	94	95	96	26	86	66	100	101	102	103
		Th	_	n	Np	Pu	Am	Cm	Bk		Es	Fm	Md	No	Lr
		232.0	_	238.0	(237)	(244)	(243)	(247)	(247)	and the same	(252)	(257)	(258)	(259)	(260)

Rg

Ds

Db

Rf

Ra 226