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INTRODUCTION 

Automatic reaction condition optimization extends beyond the fine-tuning of experimental settings 

such as temperature and concentration to encompass the selection of reagents, including catalysts and 

solvents, to maximize reaction efficiency. Beyond its widely usage in industrial manufacturing, this data-

driven approach is increasingly applied in modern academic laboratories, revolutionizing traditional 

research workflows. Historically, optimization relied on chemists' intuition and laborious one-factor-at-a-

time (OFAT) experimentation, an inefficient method that fails to capture crucial interactions between 

variables. The emergence of statistical methods such as Design of Experiments (DoE) provided a more 

systematic framework for exploring reaction space.1–3 The contemporary evolution, however, is driven by 

the integration of automated, high-throughput experimentation (HTE) platforms with sophisticated 

machine learning (ML) algorithms, notably Bayesian optimization (BO), which leverage vast amounts of 

accumulated reaction data.4 These integrated systems facilitate "self-optimization" or "closed-loop" 

workflows in which algorithms iteratively design, execute, and analyze experiments, striking a balance 

between exploring novel conditions and exploiting known high-performing regions on systems such as 

the Buchwald-Hartwig reaction (Figure 1A).5 More recently, Large Language Models (LLMs) have been 

incorporated to serve as accessible interfaces between chemists and complex optimization programs, 

creating powerful yet flexible human-AI collaboration. Despite these advances, two key challenges remain, 

which are co-optimization of continuous and discrete variables, and multi-objective co-optimization.6,7 

CONTINUOUS AND DISCRETE VARIABLE CO-OPTIMIZATION 

Optimizing continuous variables is a well-understood process, while the selection of discrete 

variables such as ligands and solvents, remains a significant challenge (Figure 1B). The ideal solution 

involves a substrate-adaptive model capable of leveraging prior knowledge from extensive datasets to 

predict conditions for novel reactant pairs. Despite the importance of seamlessly co-optimizing continuous 

and discrete variables within a unified framework, this continues to be a formidable task. While BO excels 

at continuous variables, it typically necessitates the featurization of discrete molecular choices into a 

continuous vector space, often employing DFT-derived descriptors for chemical interpretability.4 

Nevertheless, the effectiveness of the model is ultimately limited by descriptors selected. Conversely, 

LLMs are proficient at selecting discrete variables through few-shot learning, in which a handful of 

examples is given for domain-generalization, but struggle with numerical optimization.6 Given the distinct 
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strengths and weaknesses of these approaches, many current closed-loop systems simplify the problem by 

keeping continuous variables constant while surveying discrete components. This limitation highlights the 

need for more powerful, integrated algorithms that can holistically optimize complex reaction systems 

such as photoredox catalysis.8 

Figure 1. Automatic reaction condition optimization for the Buchwald-Hartwig (B-H) reaction. (A) B-H coupling 

with both continuous and discrete conditions to optimize and limited chemical space application. (B) Co-

optimization of continuous and discrete variables. (C) Difference between specific reaction with high performance 

on limited chemical space and generalizable method giving acceptable performance on broader chemical space. 

MULTI-OBJECTIVE CO-OPTIMIZATION 

A major challenge hindering the industrial adoption of novel academic methods is their limited 

generalizability across a broad spectrum of substrates (Figure 1C). Automatic reaction condition 

optimization can help benchmark and improve the applicability of a discovered reaction by approaching 

the optimal compromise between performance (e.g. yield) and generalizability. However, quantifying 

"generalizability"9 as an optimizable metric is a complex task. One data-driven approach involves 

unbiased selection of a structurally diverse set of substrates for evaluation. An alternative experimental 

method is the "robustness screen,"5 which assesses the reaction's functional group tolerance by introducing 

a panel of additives. Despite the existing efforts, formal integration as a direct, quantifiable objective 

within automated, multi-objective optimization workflows remains a key challenge for the community. 
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