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INTRODUCTION

Automatic reaction condition optimization extends beyond the fine-tuning of experimental settings
such as temperature and concentration to encompass the selection of reagents, including catalysts and
solvents, to maximize reaction efficiency. Beyond its widely usage in industrial manufacturing, this data-
driven approach is increasingly applied in modern academic laboratories, revolutionizing traditional
research workflows. Historically, optimization relied on chemists' intuition and laborious one-factor-at-a-
time (OFAT) experimentation, an inefficient method that fails to capture crucial interactions between
variables. The emergence of statistical methods such as Design of Experiments (DoE) provided a more
systematic framework for exploring reaction space.’ The contemporary evolution, however, is driven by
the integration of automated, high-throughput experimentation (HTE) platforms with sophisticated
machine learning (ML) algorithms, notably Bayesian optimization (BO), which leverage vast amounts of
accumulated reaction data.® These integrated systems facilitate "self-optimization" or "closed-loop"
workflows in which algorithms iteratively design, execute, and analyze experiments, striking a balance
between exploring novel conditions and exploiting known high-performing regions on systems such as
the Buchwald-Hartwig reaction (Figure 1A).> More recently, Large Language Models (LLMs) have been
incorporated to serve as accessible interfaces between chemists and complex optimization programs,
creating powerful yet flexible human-AlI collaboration. Despite these advances, two key challenges remain,

which are co-optimization of continuous and discrete variables, and multi-objective co-optimization.’

CONTINUOUS AND DISCRETE VARIABLE CO-OPTIMIZATION

Optimizing continuous variables is a well-understood process, while the selection of discrete
variables such as ligands and solvents, remains a significant challenge (Figure 1B). The ideal solution
involves a substrate-adaptive model capable of leveraging prior knowledge from extensive datasets to
predict conditions for novel reactant pairs. Despite the importance of seamlessly co-optimizing continuous
and discrete variables within a unified framework, this continues to be a formidable task. While BO excels
at continuous variables, it typically necessitates the featurization of discrete molecular choices into a
continuous vector space, often employing DFT-derived descriptors for chemical interpretability.®
Nevertheless, the effectiveness of the model is ultimately limited by descriptors selected. Conversely,
LLMs are proficient at selecting discrete variables through few-shot learning, in which a handful of

examples is given for domain-generalization, but struggle with numerical optimization.® Given the distinct
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strengths and weaknesses of these approaches, many current closed-loop systems simplify the problem by
keeping continuous variables constant while surveying discrete components. This limitation highlights the
need for more powerful, integrated algorithms that can holistically optimize complex reaction systems

such as photoredox catalysis.?
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Figure 1. Automatic reaction condition optimization for the Buchwald-Hartwig (B-H) reaction. (A) B-H coupling
with both continuous and discrete conditions to optimize and limited chemical space application. (B) Co-
optimization of continuous and discrete variables. (C) Difference between specific reaction with high performance
on limited chemical space and generalizable method giving acceptable performance on broader chemical space.

MULTI-OBJECTIVE CO-OPTIMIZATION

A major challenge hindering the industrial adoption of novel academic methods is their limited
generalizability across a broad spectrum of substrates (Figure 1C). Automatic reaction condition
optimization can help benchmark and improve the applicability of a discovered reaction by approaching
the optimal compromise between performance (e.g. yield) and generalizability. However, quantifying
"generalizability"® as an optimizable metric is a complex task. One data-driven approach involves
unbiased selection of a structurally diverse set of substrates for evaluation. An alternative experimental
method is the "robustness screen,"® which assesses the reaction's functional group tolerance by introducing
a panel of additives. Despite the existing efforts, formal integration as a direct, quantifiable objective

within automated, multi-objective optimization workflows remains a key challenge for the community.

REFERENCES

(1) Taylor, C. J.; et al. Chem. Rev. 2023, 123 (6), 3089-3126. (2) Denmark, S. E.; et al. J. Am. Chem.
Soc. 2008, 130 (11), 3690-3704. (3) Wall, B. J.; et al. ACS Catal. 2025, 15 (11), 8885-8893. (4) Shields,
B. J.; etal. Nature 2021, 590 (7844), 89-96. (5) Collins, K. D.; et al. Nat. Chem. 2013, 5 (7), 597-601.
(6) Zhang, Y.; et al. arXiv April 25, 2025. (7) Zeng, T.; et al. arXiv June 26, 2025. (8) Jorayev, P.; et al.
Org. Process Res. Dev. 2025, 29 (6), 1411-1422. (9) Rana, D.; et al. ACS Cent. Sci. 2024, 10 (4), 899—
906.

Copyright © 2025 by Jingdan Chen



