STEREOEDITING VIA ASYMMETRIC HYDROGEN ATOM TRANSFER
Reported by Haonan Chen September 30, 2025

Introduction

Currently, complex molecules with sp® carbon stereocenters are typically constructed by
desymmetrization of non-stereogenic centers or the assembly of chiral building blocks (Figure 1a).! These
case-by-case strategies rely on directing groups and unique stereoselective conversions. In contrast, the
direct editing of stereocenters enables the accurate tuning of configuration with a more general, late-stage
method. By stereoediting, all stereoisomers can be interconverted. Such precise manipulation greatly

extends the present chiral pools and simplifies the synthesis (Figure 1b).
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Figure 1. Strategies to construct sp® carbon stereocenters stereoselectively.

C-H Epimerization via Double Hydrogen Atom Transfer
Rigid tertiary carbon stereoediting remains challenging owing to the strength of the C-H bond. A
solution was inspired by a stereoediting enzyme, S-adenosyl-L-methionine epimerase.> The enzymatic
epimerization involves two consecutive hydrogen atom transfers (HAT): hydrogen atom abstraction (HAA)
followed by hydrogen atom donation (HAD). This double HAT process triggers the structural change from
neomycin C to its epimer, neomycin B (Figure 2).
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Figure 2. Biosynthetic example of C-H epimerization.

To mimic the double HAT in biosynthesis, HAA via proton-coupled electron transfer (PCET) was
coupled with HAD from a thiol.* A photocatalyst (PC) and a base (B) mutually cleave the C-H bond and
generate a tertiary radical. HAD from the thiol (RSH) regenerates the C-H bond and yields the new, biased
epimer (Figure 3, left). In situ radical catalyst generation can also be applied to effect epimer

interconversion (Figure 3, right).> C-H epimerization successfully converted diols, multi-substituted rings,
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and fused ring systems to their thermodynamically-favored epimers.>® Nonetheless, this double HAT

process cannot resolve enantiomers because they are isoenergetic.
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Figure 3. Accumulation of thermodynamically-favored epimers via double HAT.

Deracemization via Irreversible, Enantioselective HAT

Mechanistic studies showed that irreversible HAT can be achieved in C-H epimerization by
suppressing thiol deprotonation.” This discovery guided the design of new chiral HAT catalysts such as
cinchonidine derivatives® and tetrapeptide thiols’ (Figure 4). Meanwhile, benzophenones, whose back-
HAT is forbidden, were modified to achieve enantioselective HAT in their triplet state.!” By retaining the
enantioselectivity and irreversibility, these catalysts can successfully convert the racemic mixtures to

enantioenriched products.®%-1
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Figure 4. Catalyst design for asymmetric HAT.
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