1. Part of the process for the gasification of coal is:

$$2 \text{ CO(g)} + 2 \text{ H}_2(g) \rightarrow \text{ CO}_2(g) + \text{CH}_4(g)$$
 $\Delta \text{H}^{\circ} = -247.3 \text{ kJ}$

The standard enthalpies of formation (ΔH_f°) for CO(g) and CO₂(g) are, respectively. -110.5 kJ/mol and -393.5 kJ/mol. Calculate the standard enthalpy of formation for methane (CH₄).

- a) 38.0 kJ/mol
- b) -38.0 kJ/mol c) -74.8 kJ/mol
- d) 74.8 kJ/mol
- e) 0 kJ/mol

2. Consider the following reaction at some temperature:

$$2 \text{ NH}_3(g)$$
 \longrightarrow $3 \text{ H}_2(g) + \text{N}_2(g)$ $K_1 = 100$

What is the value of K_2 for the following reaction at the same temperature?

$$3/2 H_2(g) + \frac{1}{2} N_2(g)$$
 \longrightarrow NH₃(g) $K_2 = ?$

- a) 0.005
- b) 20
- c) 10 d) 0.1
- e) 0.02

3. Consider the reaction: $CO(g) + Cl_2(g) \leftarrow COCl_2(g)$. At 298 K, this reaction contains almost all product at equilibrium, with very little of the reactants present. Which of the following is the value of K for this reaction?

- a) 3.7

- b) 4.5×10^9 c) 0.027 d) 6.9×10^{-12}
 - e) 1.0

When a piston expands against a constant external pressure of 1.2 atm, the volume 4. changes by 32.0 L. The change in internal energy for the expansion of the gas is -51 kJ. Calculate q for this process.

- a) -36 kJ
- b) -13 kJ c) -47 kJ d) 24 kJ
- e) 56 kJ

5. A simple ionic compound, consisting of a metal and a nonmetal, forms three ions when it dissolves in water. If the solubility of the ionic compound is 1.0×10^{-4} mol/L, what is the value of K_{sp} for this ionic compound?

- a) 1.0×10^{-8} b) 3.0×10^{-8} c) 1.0×10^{-12} d) 3.0×10^{-12} e) 4.0×10^{-12}

6. A 1.0 L flask is filled initially with 4.0 mol of H₂ and 6.0 mol of Cl₂. This mixture then reacts by the following equation:

$$H_2(g) + Cl_2(g) \longrightarrow 2 HCl(g)$$
 $K = ?$

At equilibrium, 3.5 mol of Cl₂ remains. Calculate the value of K for the above reaction.

- a) 2.0
- b) 4.8
- c) 0.95
- d) 5.0
- e) 1.2

7. The standard enthalpy of formation, ΔH_f° , for hydrogen peroxide (H₂O₂) is -147.7 kJ/ mol. Calculate the bond energy of the O-O single bond in hydrogen peroxide given the following bond energies:

	Bond Energy O=O H-H	ŀ	495 432	H ₂	O ₂ exists as H–O–O–H.
a)	O–H 604 kJ/mol	b)	467 556 kJ/mol	c)	278 kJ/mol
d)	141 kJ/mol	e)	70. kJ/mol		

8. Calculate ΔH_{vap} when 1.00 mole of a liquid is vaporized at its boiling point (80.°C) and a constant 1.00 atm pressure. ΔE for the vaporization of the liquid is 27.8 kJ/mol at 80.°C and 1.00 atm pressure.

- a) 30.7 kJ
- b) 33.6 kJ
- c) -25.3 kJ

- d) 24.9 kJ
- e) -24.9 kJ

The solubility of Ce(IO₃)₃ in a 0.20 M KIO₃ solution is 4.4×10^{-8} mol/L. Calculate K_{sp} 9. for $Ce(IO_3)_3$.

- a) 1.0×10^{-28} b) 8.8×10^{-9} c) 3.5×10^{-10} d) 1.9×10^{-15} e) 3.4×10^{-22}

10. Consider the following reaction:

$$Cu(OH)_2(s) + 4 NH_3(aq) \longrightarrow Cu(NH_3)_4^{2+}(aq) + 2 OH^-(aq)$$

Which of the following is the correct equilibrium constant expression for this reaction?

a)
$$K = \frac{[Cu(NH_3)_4^{2+}][OH^-]}{[Cu(OH)_2][NH_3]}$$

b)
$$K = \frac{[Cu(NH_3)_4^{2+}][OH^-]^2}{[Cu(OH)_2][NH_3]^4}$$

c)
$$K = [Cu(NH_3)_4^{2+}][OH^-]^2$$

d)
$$K = \frac{[OH^-]^2}{[NH_3]^4}$$

e)
$$K = \frac{[Cu(NH_3)_4^{2+}][OH^-]^2}{[NH_3]^4}$$

At 35 °C, K = 1.6×10^{-5} for the reaction: 11.

$$2 \text{ NOCl}(g) \implies 2 \text{ NO}(g) + \text{Cl}_2(g)$$

If 2.0 mol of NOCl are placed into a 4.0 L evacuated container at 35°C, what is the equilibrium concentration of NO?

- a) 0.010 M
- b) 0.020 M
- c) 0.50 M
- d) 0.016 M
- e) 0.032 M

12. When 2.000 g of NaHCO₃ (molar mass = 84.01 g/mol) is reacted with 50.0 mL of 1.00 M HCl, the temperature of a coffee cup calorimeter decreases from 28.1°C to 24.8°C. Assuming the 50.0 mL of 1.00 M HCl has a mass of 50.0 g and assuming the heat capacity of the solution is 4.184 J/°C•g, calculate ΔH for the following reaction:

$$NaHCO_3(s) + HCl(aq) \rightarrow NaCl(aq) + CO_2(g) + H_2O(l)$$

- a) 30.2 kJ/mol
- b) 60.3 kJ/mol c) -30.2 kJ/mol

 $\Delta H = ?$

- d) -60.3 kJ/mol
- e) 15.1 kJ/mol

13. An equilibrium mixture for the reaction:

$$2 \text{ NO}_2(g) \implies 2 \text{ NO}(g) + O_2(g)$$
 $K = ?$

contains 4.0 mol of NO₂, 6.0 mol of NO, and 8.0 mol of O₂, all in a 2.0 L container at a certain temperature. Calculate the value of K for this reaction at this temperature.

- a) 3.0
- b) 18
- c) 9.0
- d) 6.0
- e) 12

14. At a certain temperature, K = 320. for the following reaction:

$$H_2(g) + F_2(g) \longrightarrow 2 HF(g) K = 320.$$

Initially, 0.0500 M of H₂, 0.0500 M of F₂, and 0.400 M of HF are all reacted together. After equilibrium is established, calculate the equilibrium HF concentration ($[HF]_e = ?$).

- a) 0.325 M
- b) 0.350 M
- c) 0.400 M

- d) 0.425 M
- e) 0.450 M

15. Consider a cyclic process (one that has the same initial and final state). How many of the following equalities (I - V) must be true for a cyclic process?

- I. $\Delta E = 0$; II. $\Delta H = 0$; IV. $\Delta V = 0$; V. W = 0;

- a) 1
- b) 2
- c) 3 d) 4

e) 5 (All of these must be true for a cyclic process.)

16. Consider the following reaction at 25°C:

$$B_2O_3(s) + 3 H_2O(g)$$
 \Longrightarrow $B_2H_6(g) + 3 O_2(g)$ $\Delta H^{\circ} = 2035 \text{ kJ}; K = 4.8 \times 10^{-2}$

$$\Delta H^{\circ} = 2035 \text{ kJ}; \quad K = 4.8 \times 10^{-2}$$

Assuming the reaction is initially at equilibrium, which of the following statements is **true** regarding the reaction?

- a) Raising the temperature will cause the value of K to decrease for this reaction.
- b) Adding more B₂O₃(s) will cause the reaction to shift to the right to reestablish equilibrium.
- c) If the container volume is cut in half, the reaction will shift to the left to reestablish equilibrium.
- d) Removing some B₂H₆(g) will cause the reaction to shift to the left to reestablish equilibrium.
- e) Adding more $O_2(g)$ will cause the value of K to decrease for this reaction.

Consider the following data for the next two questions:

Specific heat capacity of ice = $2.03 \text{ J/°C} \cdot \text{g}$; $\Delta H_{fusion} = 6.02 \text{ kJ/mol}$; Specific heat capacity of water = $4.18 \text{ J/°C} \cdot \text{g}$; $\Delta H_{vaporization} = 40.7 \text{ kJ/mol}$; Specific heat capacity of steam = $2.02 \text{ J/°C} \cdot \text{g}$

- 17. A 100.0 g sample of water at 50.0°C is heated to steam at 150.0°C. If heat is added at a constant rate of 10.0 kJ/min, how long will it take the water to be heated from 50.0 to 150.0°C?
 - a) 13.0 min
- b) 16.3 min
- c) 28.8 min
- d) 3.10 min
- e) 25.7 min
- 18. A coffee cup calorimeter is filled with some water initially at 60.0°C. When 36.0 g of ice at 0.0°C is added to the calorimeter contents, the temperature decreased to 22.1°C. Calculate the mass of water (at 60.0°C) initially present in the calorimeter assuming no heat loss to the surroundings or to the calorimeter.
 - a) 97.0 g
- b) 36.0 g
- c) 76.0 g
- d) 21.0 g
- e) 42.9 g
- 19. Which of the following statements (a-d) is <u>true</u> for a process in which one mole of a gas is expanded from 1.0 L to 2.0 L?
 - a) When the gas expands from 1.0 L to 2.0 L, the surroundings are doing work on the system.
 - b) The work done in the process will be the same regardless of the path in going from the initial to the final state.
 - c) It is not possible to have more than one pathway to go from the initial to the final state.
 - d) The amount of heat exchanged in the process will not depend on the path taken.
 - e) None of these statements (a-d) is true.

20. 1.0×10^3 g of solid NaHCO₃ are placed into an evacuated reaction container at 125°C. The NaHCO₃ then reacts to reach equilibrium by the following reaction:

$$2 \text{ NaHCO}_3(s) \implies \text{Na}_2\text{CO}_3(s) + \text{CO}_2(g) + \text{H}_2\text{O}(g)$$
 $K = 0.25$

Which of the following statements concerning this experiment is false?

- a) For this reaction, $K = [CO_2][H_2O]$.
- b) At equilibrium, the concentrations of CO_2 and H_2O in this experiment will be equal to each other ($[CO_2] = [H_2O]$ at equilibrium).
- c) If 2.0×10^3 g of solid NaHCO₃ were initially reacted at the same temperature (instead of 1.0×10^3 g), the value of K would remain constant (K = 0.25).
- d) If 2.0×10^3 g of solid NaHCO₃ were initially reacted at the same temperature (instead of 1.0×10^3 g), the amount of CO₂ and H₂O produced at equilibrium would increase.
- e) For this reaction, $K \neq K_p$.
- 21. Consider the following solubilities of silver chromate:
 - I. solubility of Ag₂CrO₄(s) in water
 - II. solubility of Ag₂CrO₄(s) in 0.10 M AgNO₃.
 - III. solubility of Ag₂CrO₄(s) in 0.10 M K₂CrO₄.

Which of the above solubilities (I-III) is largest (in mol/L)?

- a) I
- b) II
- c) III
- d) All of these solubilities are the same.
- 22. The energy of combustion of benzoic acid (HC₇H₅O₂) is -25 kJ/g and the energy of combustion of vanillin (C₈H₈O₃) is -20. kJ/g. When 1.0 g of benzoic acid is combusted in a bomb calorimeter, the temperature increases by 5.0°C. What will be the temperature increase ($\Delta T = ?$) when 2.0 g of vanillin is combusted in the same bomb calorimeter?
 - a) 2.0°C

b) 4.0°C

c) 6.0°C

d) 8.0°C

e) 10.0°C

23. Diborane (B₂H₆) is a highly reactive substance and was once considered as a possible rocket fuel. Using the following data:

	ΔH°
$2 B(s) + 3/2 O_2(g) \rightarrow B_2O_3(s)$	−1273 kJ
$B_2H_6(g) + 3 O_2(g) \rightarrow B_2O_3(s) + 3 H_2O(g)$	-2035 kJ
$H_2O(1) \rightarrow H_2(g) + 1/2 O_2(g)$	286 kJ
$H_2O(1) \rightarrow H_2O(g)$	44 kJ

calculate ΔH° for the following reaction:

$$2 B(s) + 3 H_2(g) \rightarrow B_2 H_6(g)$$
 $\Delta H^{\circ} = ?$

- a) −96 kJ
- b) -52 kJ
- c) 36 kJ

- d) 520. kJ
- e) 2582 kJ
- 24. In each of the following pairs of substances (I and II), which compound in each pair is most soluble (in mol/liter)?

I.
$$Bi_2S_3$$
 ($K_{sp} = 1.1 \times 10^{-73}$) vs. CuS ($K_{sp} = 8.5 \times 10^{-45}$)

II.
$$Ag_2SO_4$$
 ($K_{sp} = 1.2 \times 10^{-5}$) vs. $PbBr_2$ ($K_{sp} = 4.6 \times 10^{-6}$)

- a) $Bi_2S_3(s)$ and $Ag_2SO_4(s)$ are the most soluble in each pair.
- b) Bi₂S₃(s) and PbBr₂(s) are the most soluble in each pair.
- c) CuS and Ag₂SO₄(s) are most soluble in each pair.
- d) CuS and PbBr₂(s) are most soluble in each pair.
- How many of the following three reactions (I III) are endothermic at constant pressure? 25.

I.
$$H-H(g) \rightarrow 2 H(g)$$

II.
$$O=O(g) \rightarrow 2 O(g)$$

III.
$$N \equiv N(g) \rightarrow 2 N(g)$$

- a) 0 (none) b) 1 c) 2 d) 3 (All are endothermic reactions.)