Chemistry 204: Quiz #2

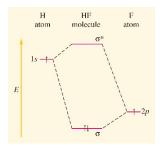
1. The following is a skeletal structure of the amino acid histidine. Complete the Lewis structure such that **all atoms have a formal charge of zero**, and answer the following question.

Which of the following best describes the hybridization around the carbon atom labeled 1 and the nitrogen atom labeled 2?

	Carbon atom (#1)	Nitrogen atom (#2)
a)	sp^3	dsp^3
a)	sp^2	sp^2
b)	sp^3	sp^3
d)	sp^3	sp^2
e)	sp^2	sp^3

2. Starch turns blue in the presence of iodine because of the formation of the triiodide ion (I_3^-) . What is the hybridization of the center iodine in the triiodide ion?

a) sp b) sp^2 c) sp^3 d) dsp^3 e) d^2sp^3


- 3. You are told that the shape around a specific atom in a molecule or ion is linear. From just this information, can you specify the hybridization of the atom?
 - a) No, a linear shape can result in two different hybridizations.
 - b) No, a linear shape can result in three different hybridizations.
 - c) No, a linear shape can result in five different hybridizations.
 - d) Yes, the atom must be *sp* hybridized.
 - e) It turns out the atom is not hybridized if the shape is linear.
- 4. Consider removing one electron from the N₂ molecule and one electron from the O₂ molecule. What is expected to happen to the bond lengths?
 - a) The bond lengths are expected to increase for both.
 - b) The bond lengths are expected to decrease for both.
 - c) The bond length is expected to increase when forming N_2^+ and to decrease when forming O_2^+ .
 - d) The bond length is expected increase when forming O_2^+ and to decrease when forming N_2^+ .

Chemistry 204: Quiz #2

- 5. Which of the following has the lowest ionization energy?
 - a) N_2 b) N_2^- c) O d) O_2 e) O_2^-
- 6. You learned a long, long time ago that nitrogen, oxygen, and fluorine gases are all diatomic (written as X₂), and with Lewis structures you can determine the number of bonds and relative bond strengths. But what about removing an electron (resulting in X₂⁺) or adding an electron (resulting in X₂⁻)? Lewis structures do not help us determine what happens to the relative bond strengths. No fear molecular orbital (MO) theory can!
 - a. Fill in the table below with N_2 , O_2 , and F_2 in the appropriate boxes each molecule should be written twice; once for when an electron is removed, and once for when an electron is added. For example, we discussed in lecture that removing an electron from H_2 results in a weaker bond, so if I asked about H_2 , you would write H_2 in the upper left box.

	Weaker bond than X ₂	Stronger bond than X ₂
Removing an electron (X_2^+)		
Adding an electron (X_2^-)		

- b. Use **MO energy-level diagrams** to **justify** your answers in the table in part a.
- c. One of the boxes in part a should be blank. Are there any homonuclear diatomic molecules (X₂; **not** an ion) that would be placed in that box? If yes, provide an example molecule with explanation. If not, explain why not, using the premises of MO theory.
- d. For N₂, O₂, and F₂, all bond strengths were greatly affected by both the adding and removing of an electron. It turns out that removing an electron from the HF molecule (resulting in HF⁺) does not appreciably change the bond strength. A figure in the textbook (reproduced here) shows a partial MO energy level-diagram for the HF molecule (focusing only on the orbitals involved in bonding). Sketch the complete MO energy-level diagram (with explanation) for all valence electrons in H and F and explain why the bond strength does not change much.

KEY: MC: 1. e, 2. d, 3. b, 4. c, 5. e

6. See videos, lectures, and the textbook.