MULTIPLE CHOICE - three (3) points each.

1. Which of the following statements is true?
a) For an endothermic reaction, the value of the equilibrium constant K increases as the temperature increases.
b) For a reaction at equilibrium, if the volume of the reaction container increases, the reaction must shift to the right to reestablish equilibrium.
c) Liquids are sometimes included in the K expression for a reaction.
d) At equilibrium, the rate of the forward reaction and the rate of the reverse reaction both equal zero.
e) Reactions that have mostly reactants at equilibrium with very little products present have large K values.
2. Consider the reaction of ethane with F_{2} :

$$
\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+6 \mathrm{~F}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CF}_{4}(\mathrm{~g})+4 \mathrm{HF}(\mathrm{~g}) \quad \Delta \mathrm{H}_{1}=?
$$

Assume the enthalpy change for the above reaction is $\Delta \mathrm{H}_{1}$. Using the following reactions and their enthalpy changes, one can construct a thermochemical cycle to determine $\Delta \mathrm{H}_{1}$.

$$
\begin{array}{ll}
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{F}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HF}(\mathrm{~g}) & \Delta \mathrm{H}_{2} \\
\mathrm{C}(\mathrm{~s})+2 \mathrm{~F}_{2}(\mathrm{~g}) \rightarrow \mathrm{CF}_{4}(\mathrm{~g}) & \Delta \mathrm{H}_{3} \\
2 \mathrm{C}(\mathrm{~s})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g}) & \Delta \mathrm{H}_{4}
\end{array}
$$

Which of the following expressions for $\Delta \mathrm{H}_{1}$ is correct?
a) $\Delta \mathrm{H}_{1}=2 \Delta \mathrm{H}_{2}-\Delta \mathrm{H}_{4}+2 \Delta \mathrm{H}_{3}$
b) $\Delta \mathrm{H}_{1}=2 \Delta \mathrm{H}_{2}-2 \Delta \mathrm{H}_{4}+\Delta \mathrm{H}_{3}$
c) $\Delta \mathrm{H}_{1}=\Delta \mathrm{H}_{3}+\Delta \mathrm{H}_{2}-2 \Delta \mathrm{H}_{4}$
d) $\Delta \mathrm{H}_{1}=6 \Delta \mathrm{H}_{2}+2 \Delta \mathrm{H}_{3}-\Delta \mathrm{H}_{4}$
e) $\Delta \mathrm{H}_{1}=\Delta \mathrm{H}_{4}-\Delta \mathrm{H}_{2}-\Delta \mathrm{H}_{3}$
3. $\quad 100 \mathrm{~mL}$ of water is placed in a coffee cup calorimeter. When 1.0 g of a soluble ionic solid is added, the temperature increases from $21.5^{\circ} \mathrm{C}$ to $24.2^{\circ} \mathrm{C}$ as the solid dissolves. For the dissolving process, what are the correct signs for $\Delta \mathrm{S}_{\text {syss }}, \Delta \mathrm{S}_{\text {surr }}$, and $\Delta \mathrm{S}_{\text {univ }}$?

	$\Delta \mathbf{S}_{\text {sys }}$	$\Delta \mathbf{S}_{\text {surr }}$	$\Delta \mathbf{S}_{\text {univ }}$
a)	-	-	-
b)	+	+	-
c)	+	-	+
d)	+	+	+
e)	-	-	+

4. For which process is $\Delta \mathrm{S}^{\circ}$ expected to be positive?
a) $\mathrm{I}_{2}(\mathrm{~g}) \rightarrow \mathrm{I}_{2}(\mathrm{~s})$
b) $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$
c) $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})+3 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
d) $\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{CO}(\mathrm{g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})$
e) $\mathrm{N}_{2}(\mathrm{~g})$ at $2 \mathrm{~atm} \rightarrow \mathrm{~N}_{2}(\mathrm{~g})$ at 1 atm (Assume constant T and n .)
5. A spontaneous chemical reaction is favored by which of the following?
a) increasing enthalpy and increasing entropy
b) decreasing enthalpy and increasing entropy
c) increasing enthalpy and decreasing entropy
d) decreasing enthalpy and decreasing entropy
6. Which of the following always describes a process at equilibrium?
a) $\Delta \mathrm{G}=1$
b) $\Delta \mathrm{H}=\mathrm{T} \Delta \mathrm{S}$
c) $\mathrm{Q}=1$
d) $\Delta \mathrm{G}=\Delta \mathrm{G}^{\circ}$
e) $\mathrm{K}=1$
7. Which of the following statements is false?
a) The equilibrium position represents the lowest free energy state available to a reaction.
b) Chemical reactions want to minimize free energy.
c) If the free energy of reactants is lower than the free energy of products, then the reverse reaction is spontaneous.
d) The value of the free energy change for a reaction is dependent on the temperature.
e) The process $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ is spontaneous at all temperatures and partial pressures of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$.
8. Consider the following reaction at 298 K :

$$
2 \mathrm{HBr}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCl}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \quad \Delta \mathrm{G}^{\circ}=-81.0 \mathrm{~kJ}
$$

Calculate $\Delta \mathrm{G}$ at 298 K for this reaction at the following initial partial pressures.

$$
\mathrm{P}_{\mathrm{HBr}}=1.00 \mathrm{~atm} \quad \mathrm{P}_{\mathrm{HCl}}=0.500 \mathrm{~atm} \quad \mathrm{P}_{\mathrm{Cl}_{2}}=5.00 \mathrm{~atm} \quad \mathrm{P}_{\mathrm{Br}_{2}}=0.200 \mathrm{~atm}
$$

a) -69.6 kJ
b) -71.3 kJ
c) -81.9 kJ
d) -90.6 kJ
e) -92.4 kJ
9. For a reaction at some initial concentrations and temperature, $\mathrm{Q}>\mathrm{K}$. Which of the following relationships must be true regarding this reaction at these conditions?
a) $\Delta \mathrm{G}=0$
b) $\Delta \mathrm{G}^{\circ}=0$
c) $\Delta \mathrm{G}>0$
d) $\mathrm{K}<0$
e) $\Delta \mathrm{G}<0$
10. Which of the following indicates the most acidic solution?
a) $\mathrm{pH}=1.2$
b) $\left[\mathrm{H}^{+}\right]=1 \times 10^{-4} \mathrm{M}$
c) $\left[\mathrm{H}^{+}\right]=0.3 \mathrm{M}$
d) $\mathrm{pOH}=5.9$
e) $\left[\mathrm{OH}^{-}\right]=0.5 \mathrm{M}$
11. The pOH of a sample of baking soda dissolved in water is 5.74 at $25^{\circ} \mathrm{C}$. Calculate the $\left[\mathrm{H}^{+}\right]$in this baking soda solution.
a) $1.0 \times 10^{-7} \mathrm{M}$
b) $5.5 \times 10^{-9} \mathrm{M}$
c) $1.8 \times 10^{-6} \mathrm{M}$
d) $1.9 \times 10^{-9} \mathrm{M}$
e) $6.2 \times 10^{-6} \mathrm{M}$
12. How many of the following statements (I-IV) about a 1.0 M solution of weak acid is/are true?
I. As the K_{a} value increases, the pH of the solution decreases.
II. As the K_{a} value increases, the percent dissociation of the acid increases.
III. As the K_{a} value increases, the K_{b} value of the conjugate base decreases.
IV. As the K_{a} value increases, the $\left[\mathrm{H}^{+}\right]$in solution increases.
a) 0 (none)
b) 1
c) 2
d) 3
e) 4 [All of the statements (I-IV) are true.]
13. Which of the following statements (a-d) is false?
a) The pH of a $10 . \mathrm{M}$ solution of KOH is 15.00 .
b) The pH of a $1.0 \times 10^{-12} \mathrm{M}$ solution of HCl is 7.00 .
c) The pH of a 0.20 M solution of $\mathrm{Ba}(\mathrm{OH})_{2}$ is 13.30 .
d) The pH of a $10 . \mathrm{M}$ solution of HCl is -1.00 .
e) None of the above statements (a-d) is false.
14. Consider a 0.10 M solution of a weak acid HA. If $\mathrm{pH}=3.00$ for this solution, determine the equilibrium concentration of the conjugate base ($\left[\mathrm{A}^{-}\right]=$?).
a) $1.0 \times 10^{-4} \mathrm{M}$
b) $1.0 \times 10^{-3} \mathrm{M}$
c) $1.0 \times 10^{-2} \mathrm{M}$
d) 1.0 M
e) $1.0 \times 10^{-5} \mathrm{M}$
15. What is the pH of a 0.015 M solution of aniline, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$? K_{b} for $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$ is 3.8×10^{-10}.
a) 11.24
b) 7.00
c) 8.38
d) 2.76
e) 5.62
16. Arrange $0.10 M$ solutions of the following compounds by increasing pH :

$$
\begin{array}{llll}
\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} & \mathrm{HCN} & \mathrm{H}_{2} \mathrm{NNH}_{3} \mathrm{ClO}_{4} & \mathrm{NH}_{3}
\end{array}
$$

a) $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}<\mathrm{H}_{2} \mathrm{NNH}_{3} \mathrm{ClO}_{4}<\mathrm{HCN}<\mathrm{NH}_{3}$
b) $\mathrm{HCN}<\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}<\mathrm{H}_{2} \mathrm{NNH}_{3} \mathrm{ClO}_{4}<\mathrm{NH}_{3}$
c) $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}<\mathrm{HCN}<\mathrm{NH}_{3}<\mathrm{H}_{2} \mathrm{NNH}_{3} \mathrm{ClO}_{4}$
d) $\mathrm{HCN}<\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}<\mathrm{NH}_{3}<\mathrm{H}_{2} \mathrm{NNH}_{3} \mathrm{ClO}_{4}$
e) $\mathrm{H}_{2} \mathrm{NNH}_{3} \mathrm{ClO}_{4}<\mathrm{NH}_{3}<\mathrm{HCN}<\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
17. Which of the following reactions is correctly identified with the appropriate equilibrium constant?
a) $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
K_{a} reaction for $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$
b) $\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) \rightleftharpoons \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
K_{b} reaction for NH_{3}
c) $\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
K_{b} reaction for $\mathrm{H}_{3} \mathrm{O}^{+}$
d) $\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$
K_{a} reaction for $\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}$
18. $\mathrm{H}_{2} \mathrm{CO}_{3}$ and $\mathrm{H}_{2} \mathrm{SO}_{4}$ are both diprotic acids. For $\mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{~K}_{\mathrm{a}_{1}}=4.3 \times 10^{-7}$ and $\mathrm{K}_{\mathrm{a}_{2}}=$ 5.6×10^{-11}. For $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{~K}_{\mathrm{a}_{1}} \gg 1$ and $\mathrm{K}_{\mathrm{a}_{2}}=1.2 \times 10^{-2}$. Which of the following statements concerning a $0.10 M \mathrm{H}_{2} \mathrm{CO}_{3}$ solution and a $0.10 M \mathrm{H}_{2} \mathrm{SO}_{4}$ solution is true?
a) The $\left[\mathrm{H}^{+}\right]$in the $0.10 \mathrm{M} \mathrm{H}_{2} \mathrm{CO}_{3}$ solution will be greater than the $\left[\mathrm{H}^{+}\right]$in the 0.10 M $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution.
b) The $\left[\mathrm{H}^{+}\right]$in the $0.10 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution will be less than $0.10 \mathrm{M}\left(\left[\mathrm{H}^{+}\right]<0.10 \mathrm{M}\right)$.
c) At equilibrium, the $\left[\mathrm{SO}_{4}{ }^{2-}\right]$ will be greater than the $\left[\mathrm{CO}_{3}{ }^{2-}\right]\left(\left[\mathrm{SO}_{4}{ }^{2-}\right]>\left[\mathrm{CO}_{3}{ }^{2-}\right]\right)$.
d) The pH of the $0.10 \mathrm{M} \mathrm{H}_{2} \mathrm{CO}_{3}$ solution will be less than $1.0(\mathrm{pH}<1.0)$.
e) At equilibrium, $\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right]>\left[\mathrm{HSO}_{4}^{-}\right]$in the $0.10 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution.
19. Consider separate 0.25 M solutions of the following three salts:

$$
\mathrm{KNO}_{2},\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{NHNO}_{3},\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{NHNO}_{2}
$$

Rank the three salt solutions in order of increasing pH (most acidic to most basic). $\left[\mathrm{K}_{\mathrm{a}}\right.$ for $\mathrm{HNO}_{2}=4.0 \times 10^{-4}$ and K_{b} for $\left.\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{~N}=4.0 \times 10^{-4}\right]$.
a) $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{NHNO}_{2}<\mathrm{KNO}_{2}<\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{NHNO}_{3}$
b) $\mathrm{KNO}_{2}<\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{NHNO}_{3}<\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{NHNO}_{2}$
c) $\mathrm{KNO}_{2}<\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{NHNO}_{2}<\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{NHNO}_{3}$
d) $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{NHNO}_{3}<\mathrm{KNO}_{2}<\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{NHNO}_{2}$
e) $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{NHNO}_{3}<\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{NHNO}_{2}<\mathrm{KNO}_{2}$
20. A chemist wishes to prepare a buffer at $\mathrm{pH}=3.5$ and has the following acids available, along with the potassium salts of their conjugate bases. Which acid/salt combination is the best choice for preparing the buffer?
a) $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\left(\mathrm{~K}_{\mathrm{a}}=1.8 \times 10^{-5}\right) / \mathrm{KC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
b) $\mathrm{HOCl}\left(\mathrm{K}_{\mathrm{a}}=3.5 \times 10^{-8}\right) / \mathrm{KOCl}$
c) $\mathrm{HNO}_{2}\left(\mathrm{~K}_{\mathrm{a}}=4.0 \times 10^{-4}\right) / \mathrm{KNO}_{2}$
d) $\operatorname{HCN}\left(\mathrm{K}_{\mathrm{a}}=6.2 \times 10^{-10}\right) / \mathrm{KCN}$
e) $\mathrm{HClO}_{2}\left(\mathrm{Ka}=1.2 \times 10^{-2}\right) / \mathrm{KClO}_{2}$
21. Consider a buffer solution containing NaF and HF. Which of the following statements is false?
a) If $\left[\mathrm{F}^{-}\right]=[\mathrm{HF}]$, then the pH of the solution equals the pK_{a} value for HF .
b) If $\left[\mathrm{F}^{-}\right]>$[HF], then the pH of the solution is greater than the pK_{a} value for HF .
c) If $[\mathrm{HF}]>\left[\mathrm{F}^{-}\right]$, then the $\left[\mathrm{H}^{+}\right]$of the solution is greater than the K_{a} value for HF .
d) If HCl is added to the buffer, then the $\left[\mathrm{F}^{-}\right]$of the resulting solution should increase.
e) If NaOH is added to the buffer, then the pH of the resulting solution should increase.
22. Five different bases, all with the same initial concentration and volume, are each titrated with $0.1 \mathrm{M} \mathrm{HNO}_{3}$. Which base titration has the lowest pH at the equivalence point?
a) $\mathrm{CH}_{3} \mathrm{NH}_{2}\left(\mathrm{~K}_{\mathrm{b}}=4.4 \times 10^{-4}\right)$
b) $\mathrm{NH}_{3}\left(\mathrm{~K}_{\mathrm{b}}=1.8 \times 10^{-5}\right)$
c) $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\left(\mathrm{~K}_{\mathrm{b}}=1.7 \times 10^{-9}\right)$
d) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}\left(\mathrm{~K}_{\mathrm{b}}=3.8 \times 10^{-10}\right)$
e) NaOH
23. Four different bases all with the same initial concentration and volume are each titrated with $0.1 \mathrm{M} \mathrm{HNO}_{3}$. Which base titration has the highest pH at the halfway point to equivalence?
a) $\mathrm{CH}_{3} \mathrm{NH}_{2}\left(\mathrm{~K}_{\mathrm{b}}=4.4 \times 10^{-4}\right)$
b) $\mathrm{NH}_{3}\left(\mathrm{~K}_{\mathrm{b}}=1.8 \times 10^{-5}\right)$
c) $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\left(\mathrm{~K}_{\mathrm{b}}=1.7 \times 10^{-9}\right)$
d) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}\left(\mathrm{~K}_{\mathrm{b}}=3.8 \times 10^{-10}\right)$

Consider the titration of 30.0 mL of 0.30 M HCN by 0.10 M KOH for the next five questions. K_{a} for $\mathrm{HCN}=6.2 \times 10^{-10}$.
24. Calculate the pH when 0.0 mL of KOH has been added.
a) 9.73
b) 4.27
c) 3.61
d) 4.87
e) 5.29
25. Calculate the pH after 15.0 mL of KOH has been added.
a) 9.21
b) 8.51
c) 12.50
d) 7.70
e) 9.91
26. Calculate the pH after 45.0 mL of KOH has been added.
a) 8.30
b) 10.11
c) 9.09
d) 4.79
e) 9.21
27. Calculate the pH at the equivalence point in this titration.
a) 11.04
b) 10.33
c) 12.08
d) 8.83
e) 7.00

WRITTEN OUT PROBLEMS - Show all work for partial credit.

28. Consider the following reaction and data:
(12 pts.)

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

Compound $\Delta H_{f}^{0} \quad \mathbf{S}^{\circ}$

$\mathrm{SO}_{3}(\mathrm{~g})$	$-396 \mathrm{~kJ} / \mathrm{mol}$	$257 \mathrm{~J} / \mathrm{K} \bullet \mathrm{mol}$
$\mathrm{SO}_{2}(\mathrm{~g})$	$-297 \mathrm{~kJ} / \mathrm{mol}$	$248 \mathrm{~J} / \mathrm{K} \bullet \mathrm{mol}$
$\mathrm{O}_{2}(\mathrm{~g})$	$?$	$205 \mathrm{~J} / \mathrm{K} \bullet \mathrm{mol}$

a) Calculate the value of $\Delta \mathrm{G}^{\circ}$ for the reaction at $25^{\circ} \mathrm{C}$.
b) Assuming $\Delta \mathrm{H}^{\circ}$ and $\Delta \mathrm{S}^{\circ}$ are temperature independent, calculate the temperatures at which this reaction is spontaneous (assuming all gases are at 1 atm).
c) At standard conditions, this reaction is allowed to react to reach equilibrium. If, at equilibrium, the partial pressures of $\mathrm{O}_{2}(\mathrm{~g})$ and $\mathrm{SO}_{3}(\mathrm{~g})$ are 0.50 atm and 2.0 atm respectively, calculate the equilibrium partial pressure of $\mathrm{SO}_{2}(\mathrm{~g})$. Note: $\mathrm{T}=25^{\circ} \mathrm{C}$
29. Consider the following equilibrium constant vs. temperature data for some reaction: (7 pts)

K	Temp
2.54×10^{4}	$109^{\circ} \mathrm{C}$
5.04×10^{2}	$225^{\circ} \mathrm{C}$
6.33×10^{1}	$303^{\circ} \mathrm{C}$
2.25×10^{-1}	$412^{\circ} \mathrm{C}$
3.03×10^{-3}	$539^{\circ} \mathrm{C}$

a) Is this reaction spontaneous at standard concentrations and $\mathrm{T}=25^{\circ} \mathrm{C}$? Explain.
b) Predict the signs of $\Delta \mathrm{H}^{\circ}$ and $\Delta \mathrm{S}^{\circ}$ for the reaction. Explain.
30. The gas arsine, AsH_{3}, decomposes by the following reaction:
(8 pts)

$$
2 \mathrm{AsH}_{3}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{As}(\mathrm{~s})+3 \mathrm{H}_{2}(\mathrm{~g})
$$

In an experiment, pure $\mathrm{AsH}_{3}(\mathrm{~g})$ of unknown initial concentration is placed into a 2.0 L container. After equilibrium is reached, 6.0 moles of $\mathrm{H}_{2}(\mathrm{~g})$ is produced and 12.0 moles of $\mathrm{AsH}_{3}(\mathrm{~g})$ is also present. Determine the initial concentration of $\mathrm{AsH}_{3}(\mathrm{~g})$ before the reaction took place $\left(\left[\mathrm{AsH}_{3}\right]_{\text {initial }}=\right.$?). Also, calculate the value of the equilibrium constant for this reaction ($\mathrm{K}=$?). Show all work for credit.
31. A 0.10 M solution of the salt NaX has a pH of 11.50 . Calculate the pH of a 1.0 M solution of HX.
(6 pts)
32. Consider 1.0 L of a solution composed of $1.60 \mathrm{M} \mathrm{HONH}_{2}\left(\mathrm{~K}_{\mathrm{b}}=1.1 \times 10^{-8}\right)$ and 0.80 M $\mathrm{HONH}_{3} \mathrm{NO}_{3}$.
(8 pts)
a) Calculate the pH of this solution.
b) In order for this 1.0 L of solution to have $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}$, would you add HCl or KOH ? What quantity (moles) of HCl or KOH would you add to the solution in order to get $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}$?
33. Consider the titration of 200.0 mL of $0.10 \mathrm{M} \mathrm{HNO}_{3}$ titrated by $0.10 \mathrm{MCa}(\mathrm{OH})_{2}$. Sketch the titration curve for this titration. On your plot, label the axis and indicate the pH and volume of the equivalence point. Also indicate the initial pH before any $\mathrm{Ca}(\mathrm{OH})_{2}$ has been added as well as the pH at 150.0 mL of $\mathrm{Ca}(\mathrm{OH})_{2}$ added.
($\mathbf{9} \mathrm{pts}$)

