Lecture 10

Free Energy and Equilibrium $\Delta G = \Delta G^{\circ} + RT \ln Q$

Lecture Question – p. 32

Given:

- 1. Ba(NO₃)₂(s) → Ba²⁺(aq) + 2 NO₃⁻(aq) ΔG^o = 18 kJ 2. N₂(g) + 3 H₂(g) → 2 NH₃(g) ΔG^o = -34 kJ
- Predict whether each reaction is endothermic or exothermic.
- a. Rxn 1 is endothermic; rxn 2 is endothermic.
- b. Rxn 1 is endothermic; rxn 2 is exothermic.
- c. Rxn 1 is exothermic; rxn 2 is endothermic.
- d. Rxn 1 is exothermic; rxn 2 is exothermic.

Lecture Question

Given:

- 1. $Ba(NO_3)_2(s) \rightarrow Ba^{2+}(aq) + 2 NO_3^{-}(aq)$ $\Delta G^\circ = 18 \text{ kJ}$ 2. $N_2(g) + 3 H_2(g) \rightarrow 2 NH_3(g) \Delta G^\circ = -34 \text{ kJ}$
- Predict whether each reaction is endothermic or exothermic.
- a. Rxn 1 is endothermic; rxn 2 is endothermic.
- b. Rxn 1 is endothermic; rxn 2 is exothermic.
- c. Rxn 1 is exothermic; rxn 2 is endothermic.
- d. Rxn 1 is exothermic; rxn 2 is exothermic.

Various Possible Combinations of ΔH and ΔS for a Process and the Resulting Dependance of Spontaneity on Temperature

Table 17.5Various Possible Combinations of ΔH and ΔS for a Processand the Resulting Dependence of Spontaneity on Temperature	
Case	Result
ΔS positive, ΔH negative ΔS positive, ΔH positive	Spontaneous at all temperatures Spontaneous at high temperatures (where exothermicity is relatively unimportant)
ΔS negative, ΔH negative	Spontaneous at low temperatures (where exothermicity is dominant)
ΔS negative, ΔH positive	Process not spontaneous at <i>any</i> temperature (reverse process is spontaneous at <i>all</i> temperatures)

 $\Delta G = \Delta H - T \Delta S$

Calculating ΔG at Nonstandard Concentrations – p. 32 For the reaction $N_2(g) + 3 H_2(g) \rightarrow 2 NH_3(g)$, $\Delta G^{\circ} = -34$ kJ. Is this reaction spontaneous when 0.10 atm of N₂, 0.10 atm of H₂, and 2.0 atm of NH₃ are reacted together? $\Delta G = \Delta G^{\circ} + RT \ln Q$

Calculating ∆G at Nonstandard Concentrations

For the reaction $N_2(g) + 3 H_2(g) \rightarrow 2 NH_3(g)$,

 $\Delta G^{\circ} = -34$ kJ. Is this reaction spontaneous when 0.10 atm of N₂, 0.10 atm of H₂, and 2.0 atm of NH₃ are reacted together?

 $\Delta G = \Delta G^{\circ} + RT \ln Q$

$$\Delta G = \Delta G^{\circ} + RT \ln \frac{(P_{NH_3})^2}{(P_{N_2})(P_{H_2})^3}, R = 8.3145 \text{ J/K mol}$$

Calculating ∆G at Nonstandard Concentrations – p. 33

 $\Delta G = \Delta G^{\circ} + RT \ln \frac{(P_{NH_3})^2}{(P_{N_2})(P_{H_2})^3}, R = 8.3145 \text{ J/K mol}$

 $\Delta G = -34,000 \text{ J} + 8.3145 \text{ J/K}(298 \text{ K}) \ln \frac{(2.0)^2}{(0.10)(0.10)^3}$

Calculating ΔG at Nonstandard Concentrations – p. 33 $\Delta G = \Delta G^{\circ} + RT \ln \frac{(P_{\rm NH_3})^2}{(P_{\rm N})(P_{\rm H})^3}, R = 8.3145 \, \text{J/K mol}$ $\Delta G = -34,000 \text{ J} + 8.3145 \text{ J/K}(298 \text{ K}) \ln \frac{(2.0)^2}{(0.10)(0.10)^3}$ $\Delta G = -34,000 \text{ J} + 8.3145(298) \ln (4.0 \times 10^4)$

Calculating ΔG at Nonstandard Concentrations – p. 33 $\Delta G = \Delta G^{\circ} + RT \ln \frac{(P_{\rm NH_3})^2}{(P_{\rm N})(P_{\rm H})^3}, R = 8.3145 \, \text{J/K mol}$ $\Delta G = -34,000 \text{ J} + 8.3145 \text{ J/K}(298 \text{ K}) \ln \frac{(2.0)^2}{(0.10)(0.10)^3}$ $\Delta G = -34,000 \text{ J} + 8.3145(298) \ln(4.0 \times 10^4)$ $\Delta G = -34,000 \text{ J} + 26,200 \text{ J} = -7800 \text{ J}$

Calculating ∆G at Nonstandard Concentrations – p. 33

 $\Delta G = \Delta G^{\circ} + RT \ln \frac{(P_{NH_3})^2}{(P_{N_2})(P_{H_2})^3}, R = 8.3145 \text{ J/K mol}$

 $\Delta G = -34,000 \text{ J} + 8.3145 \text{ J/K}(298 \text{ K}) \ln \frac{(2.0)^2}{(0.10)(0.10)^3}$

$$\Delta G = -34,000 \text{ J} + 8.3145(298) \ln(4.0 \times 10^4)$$

 $\Delta G = -34,000 \text{ J} + 26,200 \text{ J} = -7800 \text{ J}$

The forward reaction is still spontaneous at these conditions.

 $\Delta G = \Delta G^{\circ} + RT \ln Q$

$\Delta G = \Delta G^{\circ} + RT \ln Q$

At equilibrium, $\Delta G = 0$ and Q = K.

 $\Delta G = \Delta G^{\circ} + RT \ln Q$

At equilibrium, $\Delta G = 0$ and Q = K. 0 = ΔG° + RT lnK, so

 $\Delta G = \Delta G^{\circ} + RT \ln Q$

At equilibrium, $\Delta G = 0$ and Q = K. $0 = \Delta G^{\circ} + RT \ln K$, so $\Delta G^{\circ} = -RT \ln K$, and

$\Delta G = \Delta G^{\circ} + RT \ln Q$

RT

At equilibrium, $\Delta G = 0$ and Q = K. $0 = \Delta G^{\circ} + RT \ln K$, so $\Delta G^{\circ} = -RT \ln K$, and $\ln K = \frac{-\Delta G^{\circ}}{-\Delta G^{\circ} RT}$ and $K = e^{-\Delta G^{\circ}/RT}$

 $\Delta G = \Delta G^{\circ} + RT \ln Q$ At equilibrium, $\Delta G = 0$ and Q = K. $0 = \Delta G^{\circ} + RT \ln K$, so $\Delta G^{\circ} = -RT \ln K$, and $\ln K = \frac{-\Delta G^{\circ}}{-\Delta G^{\circ}/RT}$ and $K = e^{-\Delta G^{\circ}/RT}$ RT ΔG° allows one to calculate the equilibrium constant while ΔG allows one to predict

spontaneity.

Calculating Equilibrium Constants

Calculate the equilibrium constants for the dissolution of $Ba(NO_3)_2$ reaction and for the production of NH_3 reaction.

$$\ln K = \frac{-\Delta G^{\circ}}{RT} \text{ and } K = e^{-\Delta G^{\circ}/RT}$$

Qualitative Relationship Bewteen the Change in Standard Free Energy and the Equilbrium Constant for a Given Reaction

$$\Delta G^{\circ} = -RT \ln K$$

Figure 17.10: The Relationship of ΔG° for a **Reaction to Its Eventual Equilibrium Position**

Lecture Question – p. 34

Consider the reaction $2 \text{ NO}_2(g) \rightarrow \text{N}_2\text{O}_4(g)$ where $P_{\text{NO2}} = 0.29$ atm and $P_{\text{N2O4}} = 1.6$ atm. At these conditions (T = 25°C), $\Delta G = 1000$ J and $\Delta G^\circ = -6000$ J. Which of the following statements (a-c) is false?

- a. K is greater than 1 for this reaction.
- b. The forward reaction is spontaneous.
- c. At equilibrium, $P_{N2O4} < 1.6$ atm.
- d. None of these statements are false.

Lecture Question

- Consider the reaction $2 \text{ NO}_2(g) \rightarrow \text{N}_2\text{O}_4(g)$ where $P_{\text{NO2}} = 0.29 \text{ atm}$ and $P_{\text{N2O4}} = 1.6 \text{ atm}$. At these conditions (T = 25°C), $\Delta G = 1000 \text{ J}$ and $\Delta G^\circ = -6000 \text{ J}$. Which of the following statements (a-c) is false?
- a. K is greater than 1 for this reaction. True since $\Delta G^{\circ} < 0$.
- b. The forward reaction is spontaneous. False; since $\Delta G > 0$, the reverse reaction is spontaneous.
- c. At equilibrium, P_{N2O4} < 1.6 atm. True; since reverse reaction is spontaneous, the amount of products will decrease while the amount of reactants will increase.
- d. None of these statements are false.

Equilibrium/Thermodynamic Problem p. 34

Consider the reaction 2 HBr(g) \rightarrow H₂(g) + Br₂(g) where Δ H° = 104 kJ. In a particular experiment, 2.00 atm of HBr were placed a 1.00 L flask at 25°C and allowed to react to reach equilibrium. At equilibrium, P_{H2} = 5.0 x 10⁻¹⁰ atm. Calculate K, Δ G°, and Δ S° for this reaction.