Lecture 3

Calculating the pH of an Acid or Base in Water

Definitions of Acids and Bases (p. 80)

Acid-base reactions are called proton transfer reactions. In a chemical reaction, H⁺ is the symbol for a proton. So acid-base reactions are ones that involve the transfer of a proton (H⁺) from one species to another.

Acid = proton (H⁺) donor; simple acid = HA Base = proton (H⁺) acceptor; simple base = B

Acids and Bases in Water (p. 80)

General Acid Reaction in Water (K_a reaction):

$$HA(aq) + H_2O(I) \leftrightarrow A^{-}(aq) + H_3O^{+}(aq)$$
$$K_a = \frac{[H_3O^{+}][A^{-}]}{[HA]}$$

General Base Reaction in Water (K_b reaction): B(aq) + H₂O(I) \leftrightarrow BH⁺(aq) + OH⁻(aq)

$$K_{b} = \frac{[BH^{+}][OH^{-}]}{[B]}$$

Figure 14.6: The pH Scale and pH Values of Some Common Substances – p. 84

 $H_2O(I) \leftrightarrow H^+(aq) + OH^-(aq)$ [H⁺] pН $K_w = [H^+][OH^-] = 1.0 \times 10^{-14}$ 10^{-14} 14 🛶 1 *M* NaOH 10^{-13} 13 $pH = -log[H^+]$ 10^{-12} Basic 12 - Ammonia (Household 10^{-11} 11 cleaner) $pOH = -log[OH^{-}]$ 10^{-10} 10 10^{-9} 9 10^{-8} pH + pOH = 14.008 -Blood 10-7 Neutral Pure water ← Milk 10^{-6} 6 10^{-5} 5 10^{-4} 10^{-3} <- Vinegar Lemon juice 10^{-2} Acidic Stomach acid 10^{-1} ← 1 *M* HCl

Figure 14.6: The pH Scale and pH Values of Some Common Substances – p. 84

 $H_2O(I) \leftrightarrow H^+(aq) + OH^-(aq)$

 $K_w = [H^+][OH^-] = 1.0 \times 10^{-14}$

 $pH = -log[H^+]$

 $pOH = -log[OH^{-}]$

```
pH + pOH = 14.00
```

Acids add H⁺ to water. An acidic solution has: large [H⁺], so small [OH⁻] low pH, so high pOH

Figure 14.6: The pH Scale and pH Values of Some Common Substances – p. 84

 $H_2O(I) \leftrightarrow H^+(aq) + OH^-(aq)$

 $K_w = [H^+][OH^-] = 1.0 \times 10^{-14}$

 $pH = -log[H^+]$

 $pOH = -log[OH^{-}]$

```
pH + pOH = 14.00
```

Acids add H⁺ to water. An acidic solution has: large [H⁺], so small [OH⁻] low pH, so high pOH

Bases add OH⁻ to water. A basic solution has: large [OH⁻], so small [H⁺] low pOH, so high pH

Calculating pH of Acids or Bases (p. 88)

A. Calculate the pH of 0.10 *M* HCl.

B. Calculate the pH of 0.10 $M HC_2H_3O_2$.

C. Calculate the pH of 0.10 M NH₃.

D. Calculate the pH of 0.10 *M* NaOH.

Values for K_a for Some Common Monoprotic Acids – p. 81

Table 14.2Values of K_a for Some Common Monoprotic Acids				
Formula	Name	Value of K_{a}^{*}		
HSO_{4}^{-} $HCIO_{2}$ $HC_{2}H_{2}CIO_{2}$ HF HNO_{2} $HC_{2}H_{3}O_{2}$ $[Al(H_{2}O)_{6}]^{3+}$ $HOC1$ HCN NH_{4}^{+} $HOC_{6}H_{5}$	Hydrogen sulfate ion Chlorous acid Monochloracetic acid Hydrofluoric acid Nitrous acid Acetic acid Hydrated aluminum(III) ion Hypochlorous acid Hydrocyanic acid Ammonium ion Phenol	$\begin{array}{c} 1.2 \times 10^{-2} \\ 1.2 \times 10^{-2} \\ 1.35 \times 10^{-3} \\ 7.2 \times 10^{-4} \\ 4.0 \times 10^{-4} \\ 1.8 \times 10^{-5} \\ 1.4 \times 10^{-5} \\ 3.5 \times 10^{-8} \\ 6.2 \times 10^{-10} \\ 5.6 \times 10^{-10} \\ 1.6 \times 10^{-10} \end{array}$	→ Increasing acid strength	

Example K_a reaction for HNO_2 , $K_a = 4.0 \times 10^{-4}$: $HNO_2(aq) + H_2O(I) \leftrightarrow H_3O^+(aq) + NO_2^-(aq)$ or: $HNO_2(aq) \leftrightarrow H^+(aq) + NO_2^-(aq)$

Values for K_b for Some Common Weak Bases – p. 81

Table 14.3 Values of K _b for Some Common Weak Bases				
Name	Formula	Conjugate Acid	K _b	
Ammonia Methylamine Ethylamine Aniline Pyridine	$\begin{array}{c} \mathbf{NH}_{3}\\ \mathbf{CH}_{3}\mathbf{NH}_{2}\\ \mathbf{C}_{2}\mathbf{H}_{5}\mathbf{NH}_{2}\\ \mathbf{C}_{6}\mathbf{H}_{5}\mathbf{NH}_{2}\\ \mathbf{C}_{5}\mathbf{H}_{5}\mathbf{N}\end{array}$	${{ m NH_4}^+} \ { m CH_3NH_3}^+ \ { m C_2H_5NH_3}^+ \ { m C_6H_5NH_3}^+ \ { m C_5H_5NH^+}$	$\begin{array}{c} 1.8 \times 10^{-5} \\ 4.38 \times 10^{-4} \\ 5.6 \times 10^{-4} \\ 3.8 \times 10^{-10} \\ 1.7 \times 10^{-9} \end{array}$	

Example K_b reaction for C_5H_5N , $K_b = 1.7 \times 10^{-9}$: $C_5H_5N(aq) + H_2O(I) \leftrightarrow OH^-(aq) + C_5H_5NH^+(aq)$

Calculating pH of Acids or Bases (p. 88)

A. Calculate the pH of 0.10 *M* HCl. HCl is a strong acid to memorize.

- B. Calculate the pH of 0.10 $M HC_2H_3O_2$.
 - $HC_2H_3O_2$ is a weak acid ($K_a = 1.8 \times 10^{-5}$).
- C. Calculate the pH of 0.10 M NH₃.

 NH_3 is a weak base ($K_b = 1.8 \times 10^{-5}$).

D. Calculate the pH of 0.10 *M* NaOH. NaOH is a strong base to memorize.

Calculating pH of Acids or Bases (p. 88) pH = -log[H⁺]

A. Calculate the pH of 0.10 *M* HCl. HCl is a strong acid to memorize.

- B. Calculate the pH of 0.10 $M HC_2H_3O_2$.
 - $HC_2H_3O_2$ is a weak acid ($K_a = 1.8 \times 10^{-5}$).
- C. Calculate the pH of 0.10 M NH₃.

 NH_3 is a weak base ($K_b = 1.8 \times 10^{-5}$).

D. Calculate the pH of 0.10 *M* NaOH. NaOH is a strong base to memorize.

Figure 14.4: (a) Strong Acid HA Ionized in Water; (B) Weak Acid HB

 $\begin{array}{rll} & {\sf K}_{\sf a} \text{ reaction:} \\ & {\sf HX}({\sf aq}) \ + \ {\sf H}_2{\sf O}({\sf I}) \ \longleftrightarrow \ {\sf H}_3{\sf O}^+({\sf aq}) \ + \ {\sf X}^-({\sf aq}) \\ & {\sf or:} & {\sf HX}({\sf aq}) \ \leftrightarrow \ {\sf H}^+({\sf aq}) \ + \ {\sf X}^-({\sf aq}) \end{array}$

Calculating pH of Acids or Bases

- A. Calculate the pH of 0.10 *M* HCl. pH = 1.00 HCl is a strong acid to memorize.
- B. Calculate the pH of 0.10 $M \text{HC}_2\text{H}_3\text{O}_2$. pH=2.87 HC₂H₃O₂ is a weak acid (K_a = 1.8 x 10⁻⁵).
- C. Calculate the pH of 0.10 M NH₃. pH = 11.13 NH₃ is a weak base (K_b = 1.8 x 10⁻⁵).
- D. Calculate the pH of 0.10 *M* NaOH. pH = 13.00 NaOH is a strong base to memorize.

Variation of a weak acid problem-p. 89

A 3.00 *M* weak acid (HX) solution is 20.% dissociated to reach equilibrium. What is the equilibrium concentration of HX in this solution?

% dissociation or % ionization

= percent acid reacted =
$$\frac{x}{[HA]_0} \times 100$$

Calculate the K_a value for HX.

Variation of a weak base problem (p. 89, #2)

The pH of s $1.0 \times 10^{-3} M$ solution of pyrrolidine is 10.82. Calculate K_b for pyrrolidine (C₄H₉N).

Variation of a weak base problem (p. 89, #2)

The pH of s $1.0 \times 10^{-3} M$ solution of pyrrolidine is 10.82. Calculate K_b for pyrrolidine (C₄H₉N).

How solve?

Variation of a weak base problem (p. 89, #2)

The pH of s $1.0 \times 10^{-3} M$ solution of pyrrolidine is 10.82. Calculate K_b for pyrrolidine (C₄H₉N).

How solve?

Set up ICE table using the K_b reaction for the weak base pyrrolidine. See p. 89.5 for solution.

Conjugate Acid-Base Pairs (p. 83)

- Pairs of substances that only differ by a proton (H⁺) in their formulas are called conjugate acid-base pairs.
- Examples of acid-conjugate base pairs:
 - HBr and Br⁻
 - $HC_2H_3O_2$ and $C_2H_3O_2^-$ HOCI and OCI^-
- Examples of base-conjugate acid pairs:
 - NH_3 and NH_4^+ HONH₂ and HONH₃⁺

Conjugate Acid-Base Pairs (p. 83)

- -As the name indicates, one species in a conjugate acid-base pair behaves as an acid (H⁺ donor), while the other species in the pair behaves as a base (H⁺ acceptor).
- -To determine how good an acid or base something is, you need to determine the K_a or K_b value.
- -For all conjugate acid-base pairs:
 - $K_a \times K_b = K_w$ (At 25°C, $K_w = 1.0 \times 10^{-14}$)
- -See p. 85 of Handouts packet for a derivation of this formula.

For HNO₂, $K_a = 4.0 \times 10^{-4}$ and the conjugate base is NO₂⁻. What type of base is NO₂⁻?

For HNO₂, K_a = 4.0 x 10⁻⁴ and the conjugate base is NO₂⁻. What type of base is NO₂⁻? Need to calculate K_b for NO₂⁻.

 $NO_2^{-}(aq) + H_2O(I) \leftrightarrow HNO_2(aq) + OH^{-}(aq) K_b^{-}=?$

For HNO₂, $K_a = 4.0 \times 10^{-4}$ and the conjugate base is NO₂⁻. What type of base is NO₂⁻?

 $NO_2^{-}(aq) + H_2O(I) \leftrightarrow HNO_2(aq) + OH^{-}(aq) K_b^{-}$

For all conjugate acid-base pairs:

 $K_a \times K_b = K_w$ (At 25°C, $K_w = 1.0 \times 10^{-14}$)

For HNO₂, $K_a = 4.0 \times 10^{-4}$ and the conjugate base is NO_2^{-7} . What type of base is NO_2^{-7} ?

 $NO_2^{-}(aq) + H_2O(I) \leftrightarrow HNO_2(aq) + OH^{-}(aq) K_b^{=?}$

For all conjugate acid-base pairs:

 $K_a \times K_b = K_w$ (At 25°C, $K_w = 1.0 \times 10^{-14}$)

 K_b for $NO_2^- = K_w/K_a$ for HNO_2

For HNO₂, $K_a = 4.0 \times 10^{-4}$ and the conjugate base is NO₂⁻. What type of base is NO₂⁻?

 $NO_2^{-}(aq) + H_2O(I) \leftrightarrow HNO_2(aq) + OH^{-}(aq) K_b^{=}?$ $K_b \text{ for } NO_2^{-} = K_w/K_a \text{ for } HNO_2$

$$K_{b} = \frac{1.0 \times 10^{-14}}{4.0 \times 10^{-4}} = 2.5 \times 10^{-11} \text{ (NO}_{2}^{-1} \text{ is a weak base.)}$$

For HCl, $K_a \approx 1 \times 10^6$ and the conjugate base is Cl⁻. What type of base is Cl⁻?

For HCl, K_a≈ 1 x 10⁶ and the conjugate base is Cl⁻. What type of base is Cl⁻? Need to calculate K_b for Cl⁻.

For HCl, $K_a \approx 1 \ge 10^6$ and the conjugate base is Cl⁻. What type of base is Cl⁻? Need to calculate K_b for Cl⁻. For conjugate acid-base pairs, $K_a \ge K_b = K_w$.

For HCl, $K_a \approx 1 \times 10^6$ and the conjugate base is Cl⁻. What type of base is Cl⁻?

$$K_b \text{ for } Cl^- = K_w/K_a \text{ for HCl}$$

 $K_b = \frac{1.0 \times 10^{-14}}{1 \times 10^6} = 1 \times 10^{-20} \text{ (a very tiny number)}$

For HCl, K_a≈ 1 x 10⁶ and the conjugate base is Cl⁻. What type of base is Cl⁻?

$$K_b \text{ for } Cl^- = K_w/K_a \text{ for HCl}$$

 $K_b = \frac{1.0 \times 10^{-14}}{1 \times 10^6} = 1 \times 10^{-20} \text{ (a very tiny number)}$

We call Cl⁻ a worthless base because $K_b \ll K_w = 1.0 \times 10^{-14}$.

For NH₃, $K_b = 1.8 \times 10^{-5}$ and the conjugate acid is NH₄⁺. What type of acid is NH₄⁺?

For NH₃, K_b = 1.8 x 10⁻⁵ and the conjugate acid is NH₄⁺. What type of acid is NH₄⁺? Need to calculate K_a for NH₄⁺.

For NH₃, K_b = 1.8 x 10⁻⁵ and the conjugate acid is NH₄⁺. What type of acid is NH₄⁺? Need to calculate K_a for NH₄⁺.

 $NH_4^+(aq) \leftrightarrow NH_3(aq) + H^+(aq) \quad K_a = ?$

For NH₃, K_b = 1.8 x 10⁻⁵ and the conjugate acid is NH₄⁺. What type of acid is NH₄⁺? Need to calculate K_a for NH₄⁺.

 $NH_4^+(aq) \leftrightarrow NH_3(aq) + H^+(aq) \quad K_a = ?$

 $K_a \times K_b = K_w$, so K_a for $NH_4^+ = K_w/K_b$ for NH_3 .

For NH₃, K_b = 1.8 x 10⁻⁵ and the conjugate acid is NH₄⁺. What type of acid is NH₄⁺? Need to calculate K_a for NH₄⁺.

$$NH_4^+(aq) \leftrightarrow NH_3(aq) + H^+(aq) \quad K_a = ?$$

$$K_a \times K_b = K_w$$
, so K_a for $NH_4^+ = K_w/K_b$ for NH_3 .

$$K_a = \frac{1.0 \times 10^{-14}}{1.8 \times 10^{-5}} = 5.6 \times 10^{-10} \text{ (NH}_4^+ \text{ is a weak acid.)}$$

Using
$$K_a \times K_b = K_w = 1.0 \times 10^{-14}$$
 (p. 83)

For NH₃, $K_b = 1.8 \times 10^{-5}$ and the conjugate acid is NH₄⁺. What type of acid is NH₄⁺?

K_a for NH₄⁺ = K_w/K_b for NH₃
$$K_{a} = \frac{1.0 \times 10^{-14}}{1.8 \times 10^{-5}} = 5.6 \times 10^{-10} \text{ (NH4^+ is a weak acid.)}$$

One of my favorite sayings with acid-base chemistry is that weak gives you weak, and strong gives you garbage. What does this saying refer to?

For NH₃, $K_b = 1.8 \times 10^{-5}$ and the conjugate acid is NH₄⁺. What type of acid is NH₄⁺?

K_a for NH₄⁺ = K_w/K_b for NH₃
$$K_{a} = \frac{1.0 \times 10^{-14}}{1.8 \times 10^{-5}} = 5.6 \times 10^{-10} \text{ (NH4^+ is a weak acid.)}$$

One of my favorite sayings with acid-base chemistry is that weak gives you weak, and strong gives you garbage. How about the stronger the acid, the weaker the conjugate base?

Lecture Question on Conjugate Acids and Conjugate Bases-p. 87.5

Consider the K_a and K_b values given on p. 87.5. Which of the following statements is false?

- a. The pH of a 1.0 *M* NaCl solution will be 7.00.
- b. CN⁻ is a weak base.
- c. $C_6H_5NH_3^+$ is a weak acid.
- d. A 1.0 *M* solution of NO₂⁻ will have a higher pH than a 1.0 *M* solution of CN⁻.
- e. A 1.0 *M* solution of $C_6H_5NH_3^+$ will have a lower pH than a 1.0 *M* solution of NH_4^+ .

Lecture Question on Conjugate Acids and Conjugate Bases

- Consider the K_a and K_b values given on p. 87.5. Which of the following statements is false?
- a. The pH of a 1.0 *M* NaCl solution will be 7.00.
- b. CN⁻ is a weak base.
- c. $C_6H_5NH_3^+$ is a weak acid.
- d. A 1.0 *M* solution of NO₂⁻ will have a higher pH than a 1.0 *M* solution of CN⁻.
- e. A 1.0 *M* solution of $C_6H_5NH_3^+$ will have a lower pH than a 1.0 *M* solution of NH_4^+ .

Lecture Question (p. 89, #1)

A 3.00 *M* weak acid (HX) solution is 20.% dissociated to reach equilibrium. What is the equilibrium concentration of HX in this solution?

% dissociation or % ionization

= percent acid reacted =
$$\frac{x}{[HA]} \times 100$$

a. 0.60 b. 2.20 *M* c. 2.40 *M* d. 2.80 *M* e. 3.00 *M*

Lecture Question (p. 89, #1)

A 3.00 *M* weak acid (HX) solution is 20.% dissociated to reach equilibrium. What is the equilibrium concentration of HX in this solution?

% dissociation or % ionization

= percent acid reacted =
$$\frac{x}{[HA]} \times 100$$

a. 0.60 b. 2.20 *M* c. 2.40 *M* d. 2.80 *M* e. 3.00 *M*