Lecture 3

Calculating the pH of an Acid or Base in Water

Definitions of Acids and Bases (p. 80)

Acid-base reactions are called proton transfer reactions. In a chemical reaction, H^{+}is the symbol for a proton. So acid-base reactions are ones that involve the transfer of a proton $\left(\mathrm{H}^{+}\right)$from one species to another.

Acid = proton $\left(\mathrm{H}^{+}\right)$donor; simple acid $=\mathrm{HA}$
Base $=$ proton $\left(\mathrm{H}^{+}\right)$acceptor; simple base $=\mathrm{B}$

Acids and Bases in Water (p. 80)

General Acid Reaction in Water (K_{a} reaction):

$$
\begin{aligned}
& \mathrm{HA}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrow \mathrm{A}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) \\
& \mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
\end{aligned}
$$

General Base Reaction in Water (K_{b} reaction):

$$
\mathrm{B}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrow \mathrm{BH}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

$$
\mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{BH}^{+}\right]\left[\mathrm{OH}^{-}\right]}{[\mathrm{B}]}
$$

Figure 14.6: The pH Scale and pH Values of Some Common Substances - p. 84

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \\
& \mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} \\
& \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \\
& \mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right] \\
& \mathrm{pH}+\mathrm{pOH}=14.00
\end{aligned}
$$

Figure 14.6: The pH Scale and pH Values of Some Common Substances - p. 84

$\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$		
		$\stackrel{\left[\mathrm{H}^{+}\right]}{ }{ }^{\text {pH }}$
$\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}$		$10^{-14} \quad 14 \leftarrow 1 M$ NaOH
		$10^{10^{-13}} \quad 13$
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$		
$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$		${ }^{10^{-10}} \quad 10$
		$10^{-9} \quad 9$
$\mathrm{pH}+\mathrm{pOH}=14.00$		$10^{88} \quad 8$
	Neutral	
Acids add H^{+}to water.		10^{-5}
An acidic solution has:		10
		$10^{-3} \quad{ }^{3}$ L- Vinegarar juice
low pH , so high pOH	Acidic ${ }^{10}$	$\begin{array}{ll}10^{-2} & 2 \\ 10^{-1} & \text { Stomach acid }\end{array}$
		$0 \leftarrow^{19 \mathrm{HCl}}$

Figure 14.6: The pH Scale and pH Values of Some Common Substances - p. 84

Bases add OH^{-}to water. A basic solution has: large $\left[\mathrm{OH}^{-}\right]$, so small $\left[\mathrm{H}^{+}\right]$ low pOH , so high pH

Calculating pH of Acids or Bases (p. 88)

A. Calculate the pH of 0.10 M HCl .
B. Calculate the pH of $0.10 \mathrm{M} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$.
C. Calculate the pH of $0.10 \mathrm{M} \mathrm{NH}_{3}$.
D. Calculate the pH of 0.10 M NaOH .

Values for K_{a} for Some Common Monoprotic Acids - p. 81

Formula	Name	Value of $K_{\mathrm{a}}{ }^{*}$	
$\mathrm{HSO}_{4}{ }^{-}$	Hydrogen sulfate ion	1.2×10^{-2}	
HClO_{2}	Chlorous acid	1.2×10^{-2}	
$\mathrm{HC}_{2} \mathrm{H}_{2} \mathrm{ClO}_{2}$	Monochloracetic acid	1.35×10^{-3}	
HF	Hydrofluoric acid	7.2×10^{-4}	
HNO_{2}	Nitrous acid	4.0×10^{-4}	
${ }_{\left(\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right.}$	Acetic acid	1.8×10^{-5}	
$\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$	Hydrated aluminum(III) ion	1.4×10^{-5}	
HOCl	Hypochlorous acid	3.5×10^{-8}	
HCN	Hydrocyanic acid	6.2×10^{-10}	
NH_{4}^{+}	Ammonium ion	5.6×10^{-10}	
$\mathrm{HOC}_{6} \mathrm{H}_{5}$	Phenol	1.6×10^{-10}	

Example K_{a} reaction for $\mathrm{HNO}_{2}, \mathrm{~K}_{\mathrm{a}}=4.0 \times 10^{-4}$:

$$
\begin{array}{lll}
\mathrm{HNO}_{2}(\mathrm{aq}) & +\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) & \leftrightarrow
\end{array} \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{NO}_{2}^{-}(\mathrm{aq}) ~ 子 \mathrm{HNO}_{2}(\mathrm{aq}) \leftrightarrow \mathrm{H}^{+}(\mathrm{aq}) \quad+\mathrm{NO}_{2}^{-}(\mathrm{aq})
$$

Values for K_{b} for Some Common Weak Bases - p. 81

Name	Formula	Conjugate Acid	$K_{\text {b }}$
Ammonia	$\left(\mathrm{NH}_{3}{ }^{\text {a }}\right.$	$\mathrm{NH}_{4}{ }^{+}$	1.8×10^{-5}
Methylamine	$\mathrm{CH}_{3} \mathrm{NH}_{2}$	$\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}$	4.38×10^{-4}
Ethylamine	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}$	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}$	5.6×10^{-4}
Aniline	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}$	3.8×10^{-10}
Pyridine	$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$	$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}$	1.7×10^{-9}

Example K_{b} reaction for $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}, \mathrm{~K}_{\mathrm{b}}=1.7 \times 10^{-9}$:

$$
\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrow \mathrm{OH}^{-}(\mathrm{aq})+\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}(\mathrm{aq})
$$

Calculating pH of Acids or Bases (p. 88)

A. Calculate the pH of 0.10 M HCl .

HCl is a strong acid to memorize.
B. Calculate the pH of $0.10 \mathrm{M} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$.
$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ is a weak acid $\left(\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5}\right)$.
C. Calculate the pH of $0.10 \mathrm{M} \mathrm{NH}_{3}$.
NH_{3} is a weak base $\left(\mathrm{K}_{\mathrm{b}}=1.8 \times 10^{-5}\right)$.
D. Calculate the pH of 0.10 M NaOH .

NaOH is a strong base to memorize.

Calculating pH of Acids or Bases (p. 88)

$$
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]
$$

A. Calculate the pH of 0.10 M HCl .

HCl is a strong acid to memorize.
B. Calculate the pH of $0.10 \mathrm{M} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$.
$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ is a weak acid $\left(\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5}\right)$.
C. Calculate the pH of $0.10 \mathrm{M} \mathrm{NH}_{3}$.
NH_{3} is a weak base $\left(\mathrm{K}_{\mathrm{b}}=1.8 \times 10^{-5}\right)$.
D. Calculate the pH of 0.10 M NaOH .

NaOH is a strong base to memorize.

Figure 14.4: (a) Strong Acid HA Ionized in Water; (B) Weak Acid HB

K_{a} reaction:

$$
\begin{aligned}
& \mathrm{HX}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \\
& \mathrm{or}: \\
& \mathrm{HX}(\mathrm{aq})
\end{aligned} \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})+(\mathrm{aq})+\mathrm{X}^{-}(\mathrm{aq}) .
$$

Calculating pH of Acids or Bases

A. Calculate the pH of $0.10 \mathrm{M} \mathrm{HCl} . \mathrm{pH}=1.00$ HCl is a strong acid to memorize.
B. Calculate the pH of $0.10 \mathrm{M} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} . \mathrm{pH}=2.87$ $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ is a weak acid $\left(\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5}\right)$.
C. Calculate the pH of $0.10 \mathrm{M} \mathrm{NH}_{3} . \mathrm{pH}=11.13$
NH_{3} is a weak base $\left(\mathrm{K}_{\mathrm{b}}=1.8 \times 10^{-5}\right)$.
D. Calculate the pH of $0.10 \mathrm{M} \mathrm{NaOH} . \mathrm{pH}=13.00$ NaOH is a strong base to memorize.

Variation of a weak acid problem-p. 89

A 3.00 M weak acid (HX) solution is $20 . \%$ dissociated to reach equilibrium. What is the equilibrium concentration of HX in this solution?
\% dissociation or \% ionization

$$
=\text { percent acid reacted }=\frac{x}{[\mathrm{HA}]_{0}} \times 100
$$

Calculate the K_{a} value for HX .

Variation of a weak base problem (p. 89, \#2)

The pH of $\mathrm{s} 1.0 \times 10^{-3} \mathrm{M}$ solution of pyrrolidine is 10.82 . Calculate K_{b} for pyrrolidine $\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{~N}\right)$.

Variation of a weak base problem (p. 89, \#2)

The pH of $\mathrm{s} 1.0 \times 10^{-3} \mathrm{M}$ solution of pyrrolidine is 10.82 . Calculate K_{b} for pyrrolidine $\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{~N}\right)$.

How solve?

Variation of a weak base problem (p. 89, \#2)

The pH of $\mathrm{s} 1.0 \times 10^{-3} \mathrm{M}$ solution of pyrrolidine is 10.82 . Calculate K_{b} for pyrrolidine ($\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{~N}$).

How solve?
Set up ICE table using the K_{b} reaction for the weak base pyrrolidine. See p. 89.5 for solution.

Conjugate Acid-Base Pairs (p. 83)

Pairs of substances that only differ by a proton (H^{+}) in their formulas are called conjugate acid-base pairs.
Examples of acid-conjugate base pairs:
HBr and Br^{-}
$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ and $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$
HOCl and OCl^{-}
Examples of base-conjugate acid pairs:
NH_{3} and $\mathrm{NH}_{4}{ }^{+}$
HONH_{2} and $\mathrm{HONH}_{3}{ }^{+}$

Conjugate Acid-Base Pairs (p. 83)

-As the name indicates, one species in a conjugate acid-base pair behaves as an acid (H^{+}donor), while the other species in the pair behaves as a base (H^{+}acceptor).
-To determine how good an acid or base something is, you need to determine the K_{a} or K_{b} value.
-For all conjugate acid-base pairs:

$$
\mathrm{K}_{\mathrm{a}} \times \mathrm{K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{w}} \quad\left(\text { At } 25^{\circ} \mathrm{C}, \mathrm{~K}_{\mathrm{w}}=1.0 \times 10^{-14}\right)
$$

-See p. 85 of Handouts packet for a derivation of this formula.

Using $\mathrm{K}_{\mathrm{a}} \times \mathrm{K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{w}}=1.0 \times 10^{-14}(\mathrm{p} .83)$

For $\mathrm{HNO}_{2}, \mathrm{~K}_{\mathrm{a}}=4.0 \times 10^{-4}$ and the conjugate base is NO_{2}^{-}. What type of base is NO_{2}^{-}?

Using $K_{a} \times K_{b}=K_{w}=1.0 \times 10^{-14}(p .83)$

For $\mathrm{HNO}_{2}, \mathrm{~K}_{\mathrm{a}}=4.0 \times 10^{-4}$ and the conjugate base is NO_{2}^{-}. What type of base is NO_{2}^{-}? Need to calculate K_{b} for $\mathrm{NO}_{2}{ }^{-}$.
$\mathrm{NO}_{2}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrow \mathrm{HNO}_{2}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \mathrm{K}_{\mathrm{b}}=$?

Using $K_{a} \times K_{b}=K_{w}=1.0 \times 10^{-14}(p .83)$

For $\mathrm{HNO}_{2}, \mathrm{~K}_{\mathrm{a}}=4.0 \times 10^{-4}$ and the conjugate base is NO_{2}^{-}. What type of base is $\mathrm{NO}_{2}{ }^{-}$?
$\mathrm{NO}_{2}-(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrow \mathrm{HNO}_{2}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \mathrm{K}_{\mathrm{b}}=$?
For all conjugate acid-base pairs:

$$
\mathrm{K}_{\mathrm{a}} \times \mathrm{K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{w}} \quad\left(\text { At } 25^{\circ} \mathrm{C}, \mathrm{~K}_{\mathrm{w}}=1.0 \times 10^{-14}\right)
$$

Using $K_{a} \times K_{b}=K_{w}=1.0 \times 10^{-14}(p .83)$

For $\mathrm{HNO}_{2}, \mathrm{~K}_{\mathrm{a}}=4.0 \times 10^{-4}$ and the conjugate base is $\mathrm{NO}_{2}{ }^{-}$. What type of base is $\mathrm{NO}_{2}{ }^{-}$?
$\mathrm{NO}_{2}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrow \mathrm{HNO}_{2}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \mathrm{K}_{\mathrm{b}}=$?
For all conjugate acid-base pairs:

$$
\mathrm{K}_{\mathrm{a}} \times \mathrm{K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{w}} \quad\left(\text { At } 25^{\circ} \mathrm{C}, \mathrm{~K}_{\mathrm{w}}=1.0 \times 10^{-14}\right)
$$

K_{b} for $\mathrm{NO}_{2}^{-}=\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{a}}$ for HNO_{2}

Using $K_{a} \times K_{b}=K_{w}=1.0 \times 10^{-14}(p .83)$

For $\mathrm{HNO}_{2}, \mathrm{~K}_{\mathrm{a}}=4.0 \times 10^{-4}$ and the conjugate base is $\mathrm{NO}_{2}{ }^{-}$. What type of base is $\mathrm{NO}_{2}{ }^{-}$?
$\mathrm{NO}_{2}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrow \mathrm{HNO}_{2}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \mathrm{K}_{\mathrm{b}}=$? K_{b} for $\mathrm{NO}_{2}^{-}=\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{a}}$ for HNO_{2}
$\mathrm{K}_{\mathrm{b}}=\frac{1.0 \times 10^{-14}}{4.0 \times 10^{-4}}=2.5 \times 10^{-11}\left(\mathrm{NO}_{2}{ }^{-}\right.$is a weak base. $)$

Using $K_{a} \times K_{b}=K_{w}=1.0 \times 10^{-14}(p .83)$

For $\mathrm{HCl}, \mathrm{K}_{\mathrm{a}} \approx 1 \times 10^{6}$ and the conjugate base is Cl^{-}. What type of base is Cl^{-}?

Using $K_{a} \times K_{b}=K_{w}=1.0 \times 10^{-14}(p .83)$

For $\mathrm{HCl}, \mathrm{K}_{\mathrm{a}} \approx 1 \times 10^{6}$ and the conjugate base is Cl^{-}. What type of base is Cl ? Need to calculate K_{b} for Cl^{-}.

Using $K_{a} \times K_{b}=K_{w}=1.0 \times 10^{-14}(p .83)$

For $\mathrm{HCl}, \mathrm{K}_{\mathrm{a}} \approx 1 \times 10^{6}$ and the conjugate base is Cl^{-}. What type of base is Cl ? Need to calculate K_{b} for Cl^{-}. For conjugate acid-base pairs, $\mathrm{K}_{\mathrm{a}} \times \mathrm{K}_{\mathrm{b}}=$ K_{w}.

Using $K_{a} \times K_{b}=K_{w}=1.0 \times 10^{-14}$ (p. 83)

For $\mathrm{HCl}, \mathrm{K}_{\mathrm{a}} \approx 1 \times 10^{6}$ and the conjugate base is Cl^{-}. What type of base is Cl^{-}?

$$
\mathrm{K}_{\mathrm{b}} \text { for } \mathrm{Cl}^{-}=\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{a}} \text { for } \mathrm{HCl}
$$

$$
\mathrm{K}_{\mathrm{b}}=\frac{1.0 \times 10^{-14}}{1 \times 10^{6}}=1 \times 10^{-20} \quad(\mathrm{a} \text { very tiny number) }
$$

Using $K_{a} \times K_{b}=K_{w}=1.0 \times 10^{-14}$ (p. 83)

For $\mathrm{HCl}, \mathrm{K}_{\mathrm{a}} \approx 1 \times 10^{6}$ and the conjugate base is Cl^{-}. What type of base is Cl^{-}?

$$
\mathrm{K}_{\mathrm{b}} \text { for } \mathrm{Cl}^{-}=\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{a}} \text { for } \mathrm{HCl}
$$

$$
\mathrm{K}_{\mathrm{b}}=\frac{1.0 \times 10^{-14}}{1 \times 10^{6}}=1 \times 10^{-20} \quad(\mathrm{a} \text { very tiny number) }
$$

We call Cl^{-}a worthless base because

$$
\mathrm{K}_{\mathrm{b}} \ll \mathrm{~K}_{\mathrm{w}}=1.0 \times 10^{-14} .
$$

Using $K_{a} \times K_{b}=K_{w}=1.0 \times 10^{-14}(p .83)$

For $\mathrm{NH}_{3}, \mathrm{~K}_{\mathrm{b}}=1.8 \times 10^{-5}$ and the conjugate acid is $\mathrm{NH}_{4}{ }^{+}$. What type of acid is $\mathrm{NH}_{4}{ }^{+}$?

Using $\mathrm{K}_{\mathrm{a}} \times \mathrm{K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{w}}=1.0 \times 10^{-14}$ (p. 83)

For $\mathrm{NH}_{3}, \mathrm{~K}_{\mathrm{b}}=1.8 \times 10^{-5}$ and the conjugate acid is $\mathrm{NH}_{4}{ }^{+}$. What type of acid is $\mathrm{NH}_{4}{ }^{+}$? Need to calculate K_{a} for $\mathrm{NH}_{4}{ }^{+}$.

Using $K_{a} \times K_{b}=K_{w}=1.0 \times 10^{-14}(p .83)$

For $\mathrm{NH}_{3}, \mathrm{~K}_{\mathrm{b}}=1.8 \times 10^{-5}$ and the conjugate acid is $\mathrm{NH}_{4}{ }^{+}$. What type of acid is $\mathrm{NH}_{4}{ }^{+}$? Need to calculate K_{a} for $\mathrm{NH}_{4}{ }^{+}$.
$\mathrm{NH}_{4}{ }^{+}(\mathrm{aq}) \leftrightarrow \mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq}) \quad \mathrm{K}_{\mathrm{a}}=$?

Using $K_{a} \times K_{b}=K_{w}=1.0 \times 10^{-14}(p .83)$

For $\mathrm{NH}_{3}, \mathrm{~K}_{\mathrm{b}}=1.8 \times 10^{-5}$ and the conjugate acid is
$\mathrm{NH}_{4}{ }^{+}$. What type of acid is $\mathrm{NH}_{4}{ }^{+}$? Need to calculate K_{a} for $\mathrm{NH}_{4}{ }^{+}$.
$\mathrm{NH}_{4}^{+}(\mathrm{aq}) \leftrightarrow \mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq}) \quad \mathrm{K}_{\mathrm{a}}=$?

$$
\mathrm{K}_{\mathrm{a}} \times \mathrm{K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{w}} \text { so } \mathrm{K}_{\mathrm{a}} \text { for } \mathrm{NH}_{4}^{+}=\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{b}} \text { for } \mathrm{NH}_{3} .
$$

Using $K_{a} \times K_{b}=K_{w}=1.0 \times 10^{-14}(p .83)$

For $\mathrm{NH}_{3}, \mathrm{~K}_{\mathrm{b}}=1.8 \times 10^{-5}$ and the conjugate acid is $\mathrm{NH}_{4}{ }^{+}$. What type of acid is NH_{4} ? ? Need to calculate K_{a} for $\mathrm{NH}_{4}{ }^{+}$.
$\mathrm{NH}_{4}{ }^{+}(\mathrm{aq}) \leftrightarrow \mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq}) \quad \mathrm{K}_{\mathrm{a}}=$?
$K_{a} \times K_{b}=K_{w}$ so K_{a} for $\mathrm{NH}_{4}{ }^{+}=K_{w} / K_{b}$ for NH_{3}.
$\mathrm{K}_{\mathrm{a}}=\frac{1.0 \times 10^{-14}}{1.8 \times 10^{-5}}=5.6 \times 10^{-10}\left(\mathrm{NH}_{4}^{+}\right.$is a weak acid. $)$

Using $K_{a} \times K_{b}=K_{w}=1.0 \times 10^{-14}(p .83)$

For $\mathrm{NH}_{3}, \mathrm{~K}_{\mathrm{b}}=1.8 \times 10^{-5}$ and the conjugate acid is NH_{4}^{+}. What type of acid is NH_{4}^{+}?
K_{a} for $\mathrm{NH}_{4}^{+}=\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{b}}$ for NH_{3}

$$
\mathrm{K}_{\mathrm{a}}=\frac{1.0 \times 10^{-14}}{1.8 \times 10^{-5}}=5.6 \times 10^{-10}\left(\mathrm{NH}_{4}^{+} \text {is a weak acid. }\right)
$$

One of my favorite sayings with acid-base chemistry is that weak gives you weak, and strong gives you garbage. What does this saying refer to?

Using $K_{a} \times K_{b}=K_{w}=1.0 \times 10^{-14}(p .83)$

For $\mathrm{NH}_{3}, \mathrm{~K}_{\mathrm{b}}=1.8 \times 10^{-5}$ and the conjugate acid is NH_{4}^{+}. What type of acid is NH_{4}^{+}?

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{a}} \text { for } \mathrm{NH}_{4}^{+}=\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{b}} \text { for } \mathrm{NH}_{3} \\
& \mathrm{~K}_{\mathrm{a}}=\frac{1.0 \times 10^{-14}}{1.8 \times 10^{-5}}=5.6 \times 10^{-10} \quad\left(\mathrm{NH}_{4}^{+} \text {is a weak acid. }\right)
\end{aligned}
$$

One of my favorite sayings with acid-base chemistry is that weak gives you weak, and strong gives you garbage. How about the stronger the acid, the weaker the conjugate base?

Lecture Question on Conjugate Acids and Conjugate Bases-p. 87.5

Consider the K_{a} and K_{b} values given on p. 87.5. Which of the following statements is false?
a. The pH of a 1.0 M NaCl solution will be 7.00 .
b. CN^{-}is a weak base.
c. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}$is a weak acid.
d. A 1.0 M solution of $\mathrm{NO}_{2}{ }^{-}$will have a higher pH than a 1.0 M solution of CN^{-}.
e. A 1.0 M solution of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}$will have a lower pH than a 1.0 M solution of NH_{4}^{+}.

Lecture Question on Conjugate Acids and Conjugate Bases

Consider the K_{a} and K_{b} values given on p. 87.5. Which of the following statements is false?
a. The pH of a 1.0 M NaCl solution will be 7.00 .
b. CN^{-}is a weak base.
c. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}$is a weak acid.
d. A 1.0 M solution of $\mathrm{NO}_{2}{ }^{-}$will have a higher pH than a 1.0 M solution of CN^{-}.
e. A 1.0 M solution of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}$will have a lower pH than a 1.0 M solution of $\mathrm{NH}_{4}{ }^{+}$.

Lecture Question (p. 89, \#1)

A 3.00 M weak acid (HX) solution is $20 . \%$ dissociated to reach equilibrium. What is the equilibrium concentration of HX in this solution?
\% dissociation or \% ionization

$$
=\text { percent acid reacted }=\frac{x}{[\mathrm{HA}]} \times 100
$$

a. 0.60 b. 2.20 Mc c. 2.40 Md d. 2.80 M e. 3.00 M

Lecture Question (p. 89, \#1)

A 3.00 M weak acid (HX) solution is $20 . \%$ dissociated to reach equilibrium. What is the equilibrium concentration of HX in this solution?
\% dissociation or \% ionization

$$
=\text { percent acid reacted }=\frac{x}{[\mathrm{HA}]} \times 100
$$

a. 0.60 b. $2.20 \mathrm{Mc}$.2.40 M d .2 .80 M e. 3.00 M

