## Lecture 4

## Salts, Polyprotic Acids, Oxides

## Lecture Room for Next Week

There is a conference in Noyes Lab next week, so we have been kicked out of 100 Noyes Lab for the 1 pm lecture. The room for lecture next week is 144 Loomis.

## Figure 14.6: The pH Scale and pH Values of Some Common Substances (p. 84)



Bases add $\mathrm{OH}^{-}$to water. A basic solution has: large $\left[\mathrm{OH}^{-}\right]$, so small $\left[\mathrm{H}^{+}\right]$ low pOH , so high pH

## Values for $\mathrm{K}_{\mathrm{b}}$ for Some Common Weak Bases (p. 81)

| Name | Formula | Conjugate Acid | $K_{\text {b }}$ |
| :---: | :---: | :---: | :---: |
| Ammonia | $\mathrm{NH}_{3}$ | $\mathrm{NH}_{4}^{+}$ | $1.8 \times 10^{-5}$ |
| Methylamine | $\mathrm{CH}_{3} \mathrm{NH}_{2}$ | $\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}$ | $4.38 \times 10^{-4}$ |
| Ethylamine | $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}$ | $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}$ | $5.6 \times 10^{-4}$ |
| Aniline | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$ | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}^{+}$ | $3.8 \times 10^{-10}$ |
| Pyridine | $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$ | $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}$ | $1.7 \times 10^{-9}$ |

Example $\mathrm{K}_{\mathrm{b}}$ reaction for $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}, \mathrm{~K}_{\mathrm{b}}=1.7 \times 10^{-9}$ :

$$
\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrow \mathrm{OH}^{-}(\mathrm{aq})+\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}(\mathrm{aq})
$$

## Values for $\mathrm{K}_{\mathrm{a}}$ for Some Common Monoprotic Acids (p. 81)

| Formula | Name | Value of $K_{\mathrm{a}}{ }^{*}$ |  |
| :---: | :---: | :---: | :---: |
| $\mathrm{HSO}_{4}{ }^{-}$ | Hydrogen sulfate ion | $1.2 \times 10^{-2}$ |  |
| $\mathrm{HClO}_{2}$ | Chlorous acid | $1.2 \times 10^{-2}$ |  |
| $\mathrm{HC}_{2} \mathrm{H}_{2} \mathrm{ClO}_{2}$ | Monochloracetic acid | $1.35 \times 10^{-3}$ |  |
| HF | Hydrofluoric acid | $7.2 \times 10^{-4}$ |  |
| $\mathrm{HNO}_{2}$ | Nitrous acid | $4.0 \times 10^{-4}$ |  |
| $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ | Acetic acid | $1.8 \times 10^{-5}$ |  |
| $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ | Hydrated aluminum(III) ion | $1.4 \times 10^{-5}$ |  |
| HOCl | Hypochlorous acid | $3.5 \times 10^{-8}$ |  |
| HCN | Hydrocyanic acid | $6.2 \times 10^{-10}$ |  |
| $\mathrm{NH}_{4}^{+}$ | Ammonium ion | $5.6 \times 10^{-10}$ |  |
| $\mathrm{HOC}_{6} \mathrm{H}_{5}$ | Phenol | $1.6 \times 10^{-10}$ |  |

Example $\mathrm{K}_{\mathrm{a}}$ reaction for $\mathrm{HNO}_{2}, \mathrm{~K}_{\mathrm{a}}=4.0 \times 10^{-4}$ :

$$
\begin{array}{lll}
\mathrm{HNO}_{2}(\mathrm{aq}) & +\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \leftrightarrow
\end{array} \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{NO}_{2}^{-}(\mathrm{aq}), ~+\mathrm{HNO}_{2}(\mathrm{aq}) \leftrightarrow \mathrm{H}^{+}(\mathrm{aq}) \quad+\mathrm{NO}_{2}^{-}(\mathrm{aq})
$$

# Calculating the pH of Salt Solutions (p. 92) 

Calculate the pH of the following solutions:
A. 0.20 M NaF
B. $0.15 \mathrm{M} \mathrm{NH}_{4} \mathrm{NO}_{3}$
C. $0.78 \mathrm{M} \mathrm{CaCl}_{2}$

Given:
$\mathrm{K}_{\mathrm{a}}$ for $\mathrm{HF}=7.2 \times 10^{-4}$
$\mathrm{K}_{\mathrm{b}}$ for $\mathrm{NH}_{3}=1.8 \times 10^{-5}$

# pH of Salt Solutions - pH of Conjugate Acids and Conjugate Bases 

Conjugate acid-base pairs: pairs of substances that only differ by a proton $\left(\mathrm{H}^{+}\right)$in their formulas, e.g., HCl and $\mathrm{Cl}^{-}$or $\mathrm{NH}_{4}{ }^{+}$and $\mathrm{NH}_{3}$.

For all conjugate acid-base pairs:

$$
\mathrm{K}_{\mathrm{a}} \times \mathrm{K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{w}} \quad\left(\text { At } 25^{\circ} \mathrm{C}, \mathrm{~K}_{\mathrm{w}}=1.0 \times 10^{-14}\right)
$$

## Acids and Conjugate Bases (p. 84)

| $\mathrm{K}_{\mathrm{a}}$ | Acid | Conjugate <br> Base | $\mathrm{K}_{\mathrm{b}}$ |
| :---: | :---: | :---: | :---: |
| $\sim 10^{-3}$ | HF |  |  |
| $\sim 10^{-5}$ | $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ |  |  |
| $\sim 10^{-11}$ | HOI |  |  |

For all conjugate acid-base
pairs, $\mathrm{K}_{\mathrm{a}} \times \mathrm{K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{w}}=1.0 \times 10^{-14}$.
Use it to fill in the table.

## Bases and Conjugate Acids (p. 84)

| $\mathbf{K}_{\mathbf{b}}$ | Base | Conjugate <br> Acid | $\mathbf{K}_{\mathbf{a}}$ |
| :---: | :---: | :---: | :---: |
| ${ }^{\sim} 10^{-5}$ | $\mathrm{NH}_{3}$ |  |  |
| $\sim 10^{-8}$ | $\mathrm{HONH}_{2}$ |  |  |
| $\sim 10^{-10}$ | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$ |  |  |

For all conjugate acid-base pairs, $K_{a} \times K_{b}=K_{w}=1.0 \times 10^{-14}$.
Use it to fill in the table.

## Acids and Conjugate Bases

| $\mathrm{K}_{\mathrm{a}}$ | Acid | Conjugate <br> Base | $\mathrm{K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{a}}$ <br> $\mathrm{K}_{\mathrm{b}}=10^{-14} / \mathrm{K}_{\mathrm{a}}$ |
| :---: | :---: | :---: | :---: |
| $\sim 10^{-3}$ | HF | $\mathrm{F}^{-}$ | $\sim 10^{-11}$ |
| $\sim 10^{-5}$ | $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ | $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}$ | $\sim 10^{-9}$ |
| $\sim 10^{-11}$ | HOI | $\mathrm{OI}^{-}$ | $\sim 10^{-3}$ |

The conjugate base of a weak acid is a weak base.
The weaker the acid, the stronger the conjugate base.

## Values for $\mathrm{K}_{\mathrm{a}}$ for Some Common Monoprotic Acids (p. 81)

| Formula | Name | Value of $K_{\mathrm{a}}{ }^{*}$ |  |
| :---: | :---: | :---: | :---: |
| $\mathrm{HSO}_{4}{ }^{-}$ | Hydrogen sulfate ion | $1.2 \times 10^{-2}$ |  |
| $\mathrm{HClO}_{2}$ | Chlorous acid | $1.2 \times 10^{-2}$ |  |
| $\mathrm{HC}_{2} \mathrm{H}_{2} \mathrm{ClO}_{2}$ | Monochloracetic acid | $1.35 \times 10^{-3}$ |  |
| HF | Hydrofluoric acid | $7.2 \times 10^{-4}$ |  |
| $\mathrm{HNO}_{2}$ | Nitrous acid | $4.0 \times 10^{-4}$ |  |
| $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ | Acetic acid | $1.8 \times 10^{-5}$ |  |
| $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ | Hydrated aluminum(III) ion | $1.4 \times 10^{-5}$ |  |
| HOCl | Hypochlorous acid | $3.5 \times 10^{-8}$ |  |
| HCN | Hydrocyanic acid | $6.2 \times 10^{-10}$ |  |
| $\mathrm{NH}_{4}^{+}$ | Ammonium ion | $5.6 \times 10^{-10}$ |  |
| $\mathrm{HOC}_{6} \mathrm{H}_{5}$ | Phenol | $1.6 \times 10^{-10}$ |  |

Example $\mathrm{K}_{\mathrm{a}}$ reaction for $\mathrm{HNO}_{2}, \mathrm{~K}_{\mathrm{a}}=4.0 \times 10^{-4}$ :

$$
\begin{array}{lll}
\mathrm{HNO}_{2}(\mathrm{aq}) & +\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \leftrightarrow
\end{array} \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{NO}_{2}^{-}(\mathrm{aq}), ~+\mathrm{HNO}_{2}(\mathrm{aq}) \leftrightarrow \mathrm{H}^{+}(\mathrm{aq}) \quad+\mathrm{NO}_{2}^{-}(\mathrm{aq})
$$

## Bases and Conjugate Acids

| $\mathbf{K}_{\mathbf{b}}$ | Base | Conjugate <br> Acid | $\mathbf{K}_{\mathbf{a}}=\mathbf{K}_{\mathbf{w}} / \mathbf{K}_{\mathbf{b}}$ <br> $\mathbf{K}_{\mathbf{a}}=10^{-14} / \mathbf{K}_{\mathbf{b}}$ |
| :---: | :---: | :---: | :---: |
| ${ }^{\sim} 10^{-5}$ | $\mathrm{NH}_{3}$ | $\mathrm{NH}_{4}{ }^{+}$ | $\sim 10^{-9}$ |
| $\sim 10^{-8}$ | $\mathrm{HONH}_{2}$ | $\mathrm{HONH}_{3}{ }^{+}$ | $\sim 10^{-6}$ |
| $\sim 10^{-10}$ | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$ | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}$ | $\sim 10^{-4}$ |

The conjugate acid of a weak base is a weak acid.
The weaker the base, the stronger the conjugate acid.

## Values for $\mathrm{K}_{\mathrm{b}}$ for Some Common Weak Bases (p. 81)

| Name | Formula | Conjugate Acid | $K_{\text {b }}$ |
| :---: | :---: | :---: | :---: |
| Ammonia | $\mathrm{NH}_{3}$ | $\mathrm{NH}_{4}^{+}$ | $1.8 \times 10^{-5}$ |
| Methylamine | $\mathrm{CH}_{3} \mathrm{NH}_{2}$ | $\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}$ | $4.38 \times 10^{-4}$ |
| Ethylamine | $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}$ | $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}$ | $5.6 \times 10^{-4}$ |
| Aniline | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$ | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}^{+}$ | $3.8 \times 10^{-10}$ |
| Pyridine | $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$ | $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}$ | $1.7 \times 10^{-9}$ |

Example $\mathrm{K}_{\mathrm{b}}$ reaction for $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}, \mathrm{~K}_{\mathrm{b}}=1.7 \times 10^{-9}$ :

$$
\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrow \mathrm{OH}^{-}(\mathrm{aq})+\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}(\mathrm{aq})
$$

## Lecture Question (p. 94a)

Consider the following solutions:
0.20 M NaF, $0.15 \mathrm{M} \mathrm{NH}_{4} \mathrm{NO}_{3}, 0.78 \mathrm{M} \mathrm{CaCl}_{2}$

Place these solutions in order of increasing pH .
a. $\mathrm{NaF}<\mathrm{NH}_{4} \mathrm{NO}_{3}<\mathrm{CaCl}_{2}$
b. $\mathrm{NaF}<\mathrm{CaCl}_{2}<\mathrm{NH}_{4} \mathrm{NO}_{3}$
c. $\mathrm{NH}_{4} \mathrm{NO}_{3}<\mathrm{CaCl}_{2}<\mathrm{NaF}$
d. $\mathrm{NH}_{4} \mathrm{NO}_{3}<\mathrm{NaF}<\mathrm{CaCl}_{2}$
e. $\mathrm{CaCl}_{2}<\mathrm{NaF}<\mathrm{NH}_{4} \mathrm{NO}_{3}$

Hint: Weak gives you weak and strong gives you garbage.

## Lecture Question

Consider the following solutions:
0.20 M NaF, $0.15 \mathrm{M} \mathrm{NH}_{4} \mathrm{NO}_{3}, 0.78 \mathrm{M} \mathrm{CaCl}_{2}$

Place these solutions in order of increasing pH .
a. $\mathrm{NaF}<\mathrm{NH}_{4} \mathrm{NO}_{3}<\mathrm{CaCl}_{2}$
b. $\mathrm{NaF}<\mathrm{CaCl}_{2}<\mathrm{NH}_{4} \mathrm{NO}_{3}$
c. $\mathrm{NH}_{4} \mathrm{NO}_{3}<\mathrm{CaCl}_{2}<\mathrm{NaF}$
acidic neutral basic
d. $\mathrm{NH}_{4} \mathrm{NO}_{3}<\mathrm{NaF}<\mathrm{CaCl}_{2}$
e. $\mathrm{CaCl}_{2}<\mathrm{NaF}<\mathrm{NH}_{4} \mathrm{NO}_{3}$

Hint: Weak gives you weak and strong gives you garbage.

## Question (p.94a)

Are the following salts acidic, basic, or neutral?
$\mathrm{NH}_{4} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
$\mathrm{HONH}_{3} \mathrm{Ol}$
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3} \mathrm{~F}$

## Values for $\mathrm{K}_{\mathrm{b}}$ for Some Common Weak Bases (p. 81)

| Table 14-3 | Values of $\boldsymbol{K}_{\mathrm{b}}$ for Some Common Weak Bases |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| Name | Formula | Conjugate <br> Acid |  |  |  | $\boldsymbol{K}_{\mathrm{b}}$ |
| Ammonia | $\mathrm{NH}_{3}$ | $\mathrm{NH}_{4}{ }^{+}$ | $1.8 \times 10^{-5}$ |  |  |  |
| Methylamine | $\mathrm{CH}_{3} \mathrm{NH}_{2}$ | $\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}$ | $4.38 \times 10^{-4}$ |  |  |  |
| Ethylamine | $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}$ | $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}^{+}$ | $5.6 \times 10^{-4}$ |  |  |  |
| Aniline | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$ | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}^{+}$ | $3.8 \times 10^{-10}$ |  |  |  |
| Pyridine | $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}^{2}$ | $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}$ | $1.7 \times 10^{-9}$ |  |  |  |

Example $\mathrm{K}_{\mathrm{b}}$ reaction for $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}, \mathrm{~K}_{\mathrm{b}}=1.7 \times 10^{-9}$ :

$$
\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrow \mathrm{OH}^{-}(\mathrm{aq})+\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}(\mathrm{aq})
$$

From Appendix A5.3, $\mathrm{HONH}_{2}$, has $\mathrm{K}_{\mathrm{b}}=1.1 \times 10^{-8}$.

## Values for $\mathrm{K}_{\mathrm{a}}$ for Some Common Monoprotic Acids (p. 81)

| Formula | Name | Value of $K_{\mathrm{a}}{ }^{*}$ |  |
| :---: | :---: | :---: | :---: |
| $\mathrm{HSO}_{4}{ }^{-}$ | Hydrogen sulfate ion | $1.2 \times 10^{-2}$ | 礌 |
| $\mathrm{HClO}_{2}$ | Chlorous acid | $1.2 \times 10^{-2}$ |  |
| $\mathrm{HC}_{2} \mathrm{H}_{2} \mathrm{ClO}_{2}$ | Monochloracetic acid | $1.35 \times 10^{-3}$ |  |
| HF | Hydrofluoric acid | $7.2 \times 10^{-4}$ |  |
| $\mathrm{HNO}_{2}$ | Nitrous acid | $4.0 \times 10^{-4}$ |  |
| $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ | Acetic acid | $1.8 \times 10^{-5}$ |  |
| $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ | Hydrated aluminum(III) ion | $1.4 \times 10^{-5}$ |  |
| HOCl | Hypochlorous acid | $3.5 \times 10^{-8}$ |  |
| HCN | Hydrocyanic acid | $6.2 \times 10^{-10}$ |  |
| $\mathrm{NH}_{4}{ }^{+}$ | Ammonium ion | $5.6 \times 10^{-10}$ |  |
| $\mathrm{HOC}_{6} \mathrm{H}_{5}$ | Phenol | $1.6 \times 10^{-10}$ |  |

Example $\mathrm{K}_{\mathrm{a}}$ reaction for $\mathrm{HNO}_{2}, \mathrm{~K}_{\mathrm{a}}=4.0 \times 10^{-4}$ :

$$
\begin{array}{lll}
\mathrm{HNO}_{2}(\mathrm{aq}) & +\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) & \leftrightarrow
\end{array} \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{NO}_{2}^{-}(\mathrm{aq}), ~+\mathrm{HNO}_{2}(\mathrm{aq}) \leftrightarrow \mathrm{H}^{+}(\mathrm{aq}) \quad+\mathrm{NO}_{2}^{-}(\mathrm{aq})
$$

From Appendix A5.2, HOI has $\mathrm{K}_{\mathrm{b}}=2 \times 10^{-11}$.

## Question

Are the following salts acidic, basic, or neutral?
$\mathrm{NH}_{4} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$
wk acid + wk base
$\mathrm{HONH}_{3} \mathrm{Ol} \rightarrow \mathrm{HONH}_{3}{ }^{+}+\mathrm{Ol}^{-}$ wk acid + wk base
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3} \mathrm{~F} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}+\mathrm{F}^{-}$
wk acid + wk base

## Qualitative Prediction of pH for Solutions of Salts for Which Both

 Cation and Anion Have Acidic or Basic Properties| Table 14.5 | Qualitative <br> Prediction of pH <br> for Solutions of <br> Salts for Which <br> Both Cation and <br> Anion Have <br> Acidic or Basic <br> Properties |
| :---: | :---: |
| $K_{\mathrm{a}}>K_{\mathrm{b}}$ | $\mathrm{pH}<7$ (acidic) |
| $K_{\mathrm{b}}>K_{\mathrm{a}}$ | $\mathrm{pH}>7$ (basic) |
| $K_{\mathrm{a}}=K_{\mathrm{b}}$ | $\mathrm{pH}=7$ (neutral) |

## Question

Are the following salts acidic, basic, or neutral?
$\mathrm{NH}_{4} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$
wk acid + wk base
$\mathrm{HONH}_{3} \mathrm{Ol} \rightarrow \mathrm{HONH}_{3}{ }^{+}+\mathrm{Ol}^{-}$ wk acid + wk base
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3} \mathrm{~F} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}+\mathrm{F}^{-}$
wk acid + wk base

## Bases and Conjugate Acids

| $\mathbf{K}_{\mathbf{b}}$ | Base | Conjugate <br> Acid | $\mathbf{K}_{\mathbf{a}}=\mathbf{K}_{\mathbf{w}} / \mathbf{K}_{\mathbf{b}}$ <br> $\mathbf{K}_{\mathbf{a}}=10^{-14} / \mathbf{K}_{\mathbf{b}}$ |
| :---: | :---: | :---: | :---: |
| ${ }^{\sim} 10^{-5}$ | $\mathrm{NH}_{3}$ | $\mathrm{NH}_{4}{ }^{+}$ | $\sim 10^{-9}$ |
| $\sim 10^{-8}$ | $\mathrm{HONH}_{2}$ | $\mathrm{HONH}_{3}{ }^{+}$ | $\sim 10^{-6}$ |
| $\sim 10^{-10}$ | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$ | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}$ | $\sim 10^{-4}$ |

The conjugate acid of a weak base is a weak acid.
The weaker the base, the stronger the conjugate acid.

## Acids and Conjugate Bases

| $\mathrm{K}_{\mathrm{a}}$ | Acid | Conjugate <br> Base | $\mathrm{K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{a}}$ <br> $\mathrm{K}_{\mathrm{b}}=10^{-14} / \mathrm{K}_{\mathrm{a}}$ |
| :---: | :---: | :---: | :---: |
| $\sim 10^{-3}$ | HF | $\mathrm{F}^{-}$ | $\sim 10^{-11}$ |
| $\sim 10^{-5}$ | $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ | $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}$ | $\sim 10^{-9}$ |
| $\sim 10^{-11}$ | HOI | $\mathrm{OI}^{-}$ | $\sim 10^{-3}$ |

The conjugate base of a weak acid is a weak base.
The weaker the acid, the stronger the conjugate base.

## Question (p.94a)

Are the following salts acidic, basic, or neutral?
$\mathrm{NH}_{4} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-} \quad \mathrm{pH}=7.0\left(\mathrm{~K}_{\mathrm{a}}=\mathrm{K}_{\mathrm{b}}\right)$

$$
\mathrm{K}_{\mathrm{a}} \sim 10^{-10} \quad \mathrm{~K}_{\mathrm{b}} \sim 10^{-10}
$$

$\mathrm{HONH}_{3} \mathrm{Ol} \rightarrow \mathrm{HONH}_{3}{ }^{+}+\mathrm{Ol}^{-} \quad \mathrm{pH}>7.0\left(\mathrm{~K}_{\mathrm{b}}>\mathrm{K}_{\mathrm{a}}\right)$

$$
\mathrm{K}_{\mathrm{a}} \sim 10^{-6} \quad \mathrm{~K}_{\mathrm{b}} \sim 10^{-3}
$$

$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3} \mathrm{~F} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}^{+}+\mathrm{F}^{-} \quad \mathrm{pH}<7.0\left(\mathrm{~K}_{\mathrm{a}}>\mathrm{K}_{\mathrm{b}}\right)$

$$
\mathrm{K}_{\mathrm{a}} \sim 10^{-4} \quad \mathrm{~K}_{\mathrm{b}} \sim 10^{-11}
$$

# Calculating the pH of Salt Solutions (p. 92) 

Calculate the pH of the following solutions:
A. 0.20 M NaF
B. $0.15 \mathrm{M} \mathrm{NH}_{4} \mathrm{NO}_{3}$
C. $0.78 \mathrm{M} \mathrm{CaCl}_{2}$

Given:
$\mathrm{K}_{\mathrm{a}}$ for $\mathrm{HF}=7.2 \times 10^{-4}$
$\mathrm{K}_{\mathrm{b}}$ for $\mathrm{NH}_{3}=1.8 \times 10^{-5}$

## Lecture Question on Conjugate Acids and Conjugate Bases-p. 87.5

Consider the $\mathrm{K}_{\mathrm{a}}$ and $\mathrm{K}_{\mathrm{b}}$ values given at the bottom of p. 87.5. Which of the following statements is false?
a. The pH of a 1.0 M NaCl solution will be 7.00 .
b. $\mathrm{CN}^{-}$is a weak base.
c. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}$is a weak acid.
d. A 1.0 M solution of $\mathrm{NO}_{2}^{-}$will have a higher pH than a 1.0 M solution of $\mathrm{CN}^{-}$.
e. A 1.0 M solution of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}$will have a lower pH than a 1.0 M solution of $\mathrm{NH}_{4}^{+}$.

## Lecture Question on Conjugate Acids and Conjugate Bases

Consider the $\mathrm{K}_{\mathrm{a}}$ and $\mathrm{K}_{\mathrm{b}}$ values given on the board. Which of the following statements is false?
a. The pH of a 1.0 M NaCl solution will be 7.00 .
b. $\mathrm{CN}^{-}$is a weak base.
c. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}$is a weak acid.
d. A 1.0 M solution of $\mathrm{NO}_{2}{ }^{-}$will have a higher pH than a 1.0 M solution of $\mathrm{CN}^{-}$.
e. A 1.0 M solution of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}$will have a lower pH than a 1.0 M solution of $\mathrm{NH}_{4}{ }^{+}$.

## Stepwise Dissociation Constants for Several Common Polyprotic Acids

| Table 14-4 | Stepwise Dissociation Constants for Several Common Polyprotic Acids |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Name | Formula $^{2}$ | $\boldsymbol{K}_{\mathrm{a}_{1}}$ | $\boldsymbol{K}_{\mathrm{a}_{2}}$ | $\boldsymbol{K}_{\mathrm{a}_{3}}$ |
| Phosphoric acid | $\mathrm{H}_{3} \mathrm{PO}_{4}$ | $7.5 \times 10^{-3}$ | $6.2 \times 10^{-8}$ | $4.8 \times 10^{-13}$ |
| Arsenic acid | $\mathrm{H}_{3} \mathrm{AsO}_{4}$ | $5 \times 10^{-3}$ | $8 \times 10^{-8}$ | $6 \times 10^{-10}$ |
| Carbonic acid | $\mathrm{H}_{2} \mathrm{CO}_{3}$ | $4.3 \times 10^{-7}$ | $5.6 \times 10^{-11}$ |  |
| Sulfuric acid | $\mathrm{H}_{2} \mathrm{SO}_{4}$ | Large | $1.2 \times 10^{-2}$ |  |
| Sulfurous acid | $\mathrm{H}_{2} \mathrm{SO}_{3}$ | $1.5 \times 10^{-2}$ | $1.0 \times 10^{-7}$ | $\sim 10^{-19}$ |
| Hydrosulfuric acid | $\mathrm{H}_{2} \mathrm{~S}^{*}$ | $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ | $6.0 \times 10^{-7}$ | $6.1 \times 10^{-5}$ |
| Oxalic acid | $\mathrm{H}_{2} \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{6}$ | $6.5 \times 10^{-2}$ | $1.6 \times 10^{-12}$ |  |
| Ascorbic acid (vitamin C) |  | $7.9 \times 10^{-5}$ |  |  |

## Lecture Question (p. 94a)

Consider a $0.10 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution. What is the correct ordering of species present in this solution from largest to smallest concentration?
a. $\mathrm{H}^{+}>\mathrm{HSO}_{4}^{-}>\mathrm{SO}_{4}{ }^{2-}$
b. $\mathrm{HSO}_{4}^{-}>\mathrm{SO}_{4}{ }^{2-}>\mathrm{H}^{+}$
c. $\mathrm{H}^{+}>\mathrm{SO}_{4}{ }^{2-}>\mathrm{HSO}_{4}^{-}$
d. $\mathrm{HSO}_{4}^{-}>\mathrm{H}^{+}>\mathrm{SO}_{4}{ }^{2-}$
e. $\mathrm{SO}_{4}{ }^{2-}>\mathrm{H}^{+}>\mathrm{HSO}_{4}^{-}$

## Lecture Question

Consider a $0.10 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution. What is the correct ordering of species present in this solution from largest to smallest concentration?
a. $\mathrm{H}^{+}>\mathrm{HSO}_{4}^{-}>\mathrm{SO}_{4}{ }^{2-}$
b. $\mathrm{HSO}_{4}^{-}>\mathrm{SO}_{4}{ }^{2-}>\mathrm{H}^{+}$
c. $\mathrm{H}^{+}>\mathrm{SO}_{4}{ }^{2-}>\mathrm{HSO}_{4}^{-}$
d. $\mathrm{HSO}_{4}^{-}>\mathrm{H}^{+}>\mathrm{SO}_{4}{ }^{2-}$
e. $\mathrm{SO}_{4}{ }^{2-}>\mathrm{H}^{+}>\mathrm{HSO}_{4}^{-}$

