### Lecture 24

Buffers

-Buffers are solutions that resist changes in pH. When acids or bases are added to a buffer solution, the pH doesn't change much.

- -Buffers are solutions that resist changes in pH. When acids or bases are added to a buffer solution, the pH doesn't change much.
- -A buffer is any solution that contains large quantities of both a weak acid and it's conjugate base. A solution containing both a weak base and its conjugate acid is also a buffer solution.

- -Buffers are solutions that resist changes in pH. When acids or bases are added to a buffer solution, the pH doesn't change much.
- -A buffer is any solution that contains large quantities of both a weak acid and it's conjugate base. A solution containing both a weak base and its conjugate acid is also a buffer solution.
- -Any acid-conjugate base pair or base-conjugate acid pair from Tables 14.2, 14.3, and 14.4 can make a buffer solution.

### Values for K<sub>a</sub> for Some Common Monoprotic Acids

| Table 14.2Values of $K_a$ for Some Common Monoprotic Acids                                                                                                          |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                   |                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| Formula                                                                                                                                                             | Name                                                                                                                                                                                                               | Value of $K_{a}^{*}$                                                                                                                                                                                                                                                              |                               |
| $\begin{split} &HSO_4^{-} \\ &HClO_2 \\ &HC_2H_2ClO_2 \\ &HF \\ &HNO_2 \\ &HC_2H_3O_2 \\ &[Al(H_2O)_6]^{3+} \\ &HOCl \\ &HCN \\ &NH_4^{+} \\ &HOC_6H_5 \end{split}$ | Hydrogen sulfate ion<br>Chlorous acid<br>Monochloracetic acid<br>Hydrofluoric acid<br>Nitrous acid<br>Acetic acid<br>Hydrated aluminum(III) ion<br>Hypochlorous acid<br>Hydrocyanic acid<br>Ammonium ion<br>Phenol | $\begin{array}{c} 1.2 \times 10^{-2} \\ 1.2 \times 10^{-2} \\ 1.35 \times 10^{-3} \\ 7.2 \times 10^{-4} \\ 4.0 \times 10^{-4} \\ 1.8 \times 10^{-5} \\ 1.4 \times 10^{-5} \\ 3.5 \times 10^{-8} \\ 6.2 \times 10^{-10} \\ 5.6 \times 10^{-10} \\ 1.6 \times 10^{-10} \end{array}$ | →<br>Increasing acid strength |

Example  $K_a$  reaction for  $HNO_2$ ,  $K_a = 4.0 \times 10^{-4}$ :  $HNO_2(aq) + H_2O(I) \leftrightarrow H_3O^+(aq) + NO_2^-(aq)$ or:  $HNO_2(aq) \leftrightarrow H^+(aq) + NO_2^-(aq)$ 

### Buffer Examples (p. 96)

 $0.10 M HC_2H_3O_2 + 0.20 M NaC_2H_3O_2$ 

0.50 *M* HCN + 0.50 *M* KCN

#### Values for K<sub>b</sub> for Some Common Weak Bases

| Table 14.3 Values of K <sub>b</sub> for Some Common Weak Bases |                                                                                                                                                                                               |                                                                                   |                                                                                                                                             |
|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Name                                                           | Formula                                                                                                                                                                                       | Conjugate<br>Acid                                                                 | K <sub>b</sub>                                                                                                                              |
| Ammonia<br>Methylamine<br>Ethylamine<br>Aniline<br>Pyridine    | $\begin{array}{c} \mathrm{NH}_3\\ \mathrm{CH}_3\mathrm{NH}_2\\ \mathrm{C}_2\mathrm{H}_5\mathrm{NH}_2\\ \mathrm{C}_6\mathrm{H}_5\mathrm{NH}_2\\ \mathrm{C}_5\mathrm{H}_5\mathrm{N}\end{array}$ | ${ m NH_4}^+ { m CH_3NH_3}^+ { m C_2H_5NH_3}^+ { m C_6H_5NH_3}^+ { m C_5H_5NH^+}$ | $\begin{array}{c} 1.8 \times 10^{-5} \\ 4.38 \times 10^{-4} \\ 5.6 \times 10^{-4} \\ 3.8 \times 10^{-10} \\ 1.7 \times 10^{-9} \end{array}$ |

Example  $K_b$  reaction for  $C_5H_5N$ ,  $K_b = 1.7 \times 10^{-9}$ :  $C_5H_5N(aq) + H_2O(I) \leftrightarrow OH^-(aq) + C_5H_5NH^+(aq)$ 

### Buffer Examples (p. 96)

 $0.10 M HC_2H_3O_2 + 0.20 M NaC_2H_3O_2$ 

0.50 *M* HCN + 0.50 *M* KCN

 $0.26 M NH_4 CI + 0.26 M NH_3$ 

 $1.0 M C_5 H_5 N H N O_3 + 0.75 M C_5 H_5 N$ 

### Stepwise Dissociation Constants for Several Common Polyprotic Acids

| Table 14.4 🕨 Stepwise Dissociation Constants for Several Common Polyprotic Acids |                |                      |                       |                        |
|----------------------------------------------------------------------------------|----------------|----------------------|-----------------------|------------------------|
| Name                                                                             | Formula        | K <sub>a1</sub>      | K <sub>a2</sub>       | <i>K</i> <sub>a3</sub> |
| Phosphoric acid                                                                  | $H_3PO_4$      | $7.5 \times 10^{-3}$ | $6.2 \times 10^{-8}$  | $4.8 \times 10^{-13}$  |
| Arsenic acid                                                                     | $H_3AsO_4$     | $5 \times 10^{-3}$   | $8 \times 10^{-8}$    | $6 \times 10^{-10}$    |
| Carbonic acid                                                                    | $H_2CO_3$      | $4.3 \times 10^{-7}$ | $5.6 \times 10^{-11}$ |                        |
| Sulfuric acid                                                                    | $H_2SO_4$      | Large                | $1.2 \times 10^{-2}$  |                        |
| Sulfurous acid                                                                   | $H_2SO_3$      | $1.5 \times 10^{-2}$ | $1.0 \times 10^{-7}$  |                        |
| Hydrosulfuric acid <sup>*</sup>                                                  | $H_2S$         | $1.0 \times 10^{-7}$ | $\sim 10^{-19}$       |                        |
| Oxalic acid                                                                      | $H_2C_2O_4$    | $6.5 \times 10^{-2}$ | $6.1 \times 10^{-5}$  |                        |
| Ascorbic acid (vitamin C)                                                        | $H_2C_6H_6O_6$ | $7.9 \times 10^{-5}$ | $1.6 \times 10^{-12}$ |                        |

 $H_2CO_3 \leftrightarrow HCO_3^- + H^+ K_{a1} = 4.3 \times 10^{-7}$ 

 $HCO_3^- \leftrightarrow CO_3^{2-} + H^+ K_{a2} = 5.6 \times 10^{-11}$ 

- -Buffers are solutions that resist changes in pH. When acids or bases are added to a buffer solution, the pH doesn't change much.
- -A buffer is any solution that contains large quantities of both a weak acid and it's conjugate base. A solution containing both a weak base and its conjugate acid is also a buffer solution.
- -Any acid-conjugate base pair or base-conjugate acid pair from Tables 14.2, 14.3, and 14.4 can make a buffer solution.

| Solution                                           | рН | pH after 0.10<br>mol NaOH<br>added | pH after 0.20<br>mol HCl added |
|----------------------------------------------------|----|------------------------------------|--------------------------------|
| H <sub>2</sub> O                                   |    |                                    |                                |
| 0.50 <i>M</i> HF +<br>0.50 <i>M</i> NaF<br>(1.0 L) |    |                                    |                                |

| Solution                                           | рН   | pH after 0.10<br>mol NaOH<br>added | pH after 0.20<br>mol HCl added |
|----------------------------------------------------|------|------------------------------------|--------------------------------|
| H <sub>2</sub> O                                   | 7.00 | 13.00                              | 0.70                           |
| 0.50 <i>M</i> HF +<br>0.50 <i>M</i> NaF<br>(1.0 L) |      |                                    |                                |

| Solution                                           | рН   | pH after 0.10<br>mol NaOH<br>added | pH after 0.20<br>mol HCl added |
|----------------------------------------------------|------|------------------------------------|--------------------------------|
| H <sub>2</sub> O                                   | 7.00 | 13.00                              | 0.70                           |
| 0.50 <i>M</i> HF +<br>0.50 <i>M</i> NaF<br>(1.0 L) | 3.14 |                                    |                                |

| Solution                                           | рН   | pH after 0.10<br>mol NaOH<br>added | pH after 0.20<br>mol HCl added |
|----------------------------------------------------|------|------------------------------------|--------------------------------|
| H <sub>2</sub> O                                   | 7.00 | 13.00                              | 0.70                           |
| 0.50 <i>M</i> HF +<br>0.50 <i>M</i> NaF<br>(1.0 L) | 3.14 | 3.32                               |                                |

| Solution                                           | рН   | pH after 0.10<br>mol NaOH<br>added | pH after 0.20<br>mol HCl added |
|----------------------------------------------------|------|------------------------------------|--------------------------------|
| H <sub>2</sub> O                                   | 7.00 | 13.00                              | 0.70                           |
| 0.50 <i>M</i> HF +<br>0.50 <i>M</i> NaF<br>(1.0 L) | 3.14 | 3.32                               | 2.77                           |

What concentration of NaNO<sub>2</sub> is necessary to buffer a 0.050 M HNO<sub>2</sub> solution at pH = 3.00?

What concentration of NaNO<sub>2</sub> is necessary to buffer a 0.050 *M* HNO<sub>2</sub> solution at pH = 3.00?

$$pH = pK_a + log \frac{[base]}{[acid]}$$

Buffer =  $HNO_2 + NO_2^-$ ; K<sub>a</sub> for  $HNO_2 = 4.0 \times 10^{-4}$ 

What concentration of NaNO<sub>2</sub> is necessary to buffer a 0.050 *M* HNO<sub>2</sub> solution at pH = 3.00?

$$pH = pK_a + log \frac{[base]}{[acid]}$$

Buffer =  $HNO_2 + NO_2^{-}$ ; K<sub>a</sub> for  $HNO_2 = 4.0 \times 10^{-4}$ 

When  $pH = pK_a$  or  $[H^+] = K_a$ , [base] = [acid]. When  $pH < pK_a$  or  $[H^+] > K_a$ , [acid] > [base]. When  $pH > pK_a$  or  $[H^+] < K_a$ , [base] > [acid].

# Lecture Question (p. 98.75)

- Consider a buffer consisting of HONH<sub>2</sub> and HONH<sub>3</sub>Cl. Which of the following statements is false? Assume  $K_a$  for HONH<sub>3</sub><sup>+</sup> = 1 x 10<sup>-8</sup>.
- a. If NaOH were added to this buffer, the [HONH<sub>3</sub><sup>+</sup>] would decrease.
- b. If  $[HONH_2] = [HONH_3^+]$  in this buffer, pH = 8.0.
- c. Adding more HONH<sub>2</sub> to the initial buffer will increase the pH.
- d. If [HONH<sub>3</sub><sup>+</sup>] > [HONH<sub>2</sub>] in this buffer, the [H<sup>+</sup>] of the solution will be larger than the K<sub>a</sub> value.
- e. If  $[HONH_3^+] < [HONH_2]$  in this buffer, the pH of the solution will be smaller than the pK<sub>a</sub> value.

# Lecture Question (p. 98.75)

- Consider a buffer consisting of HONH<sub>2</sub> and HONH<sub>3</sub>Cl. Which of the following statements is false? Assume  $K_a$  for HONH<sub>3</sub><sup>+</sup> = 1 x 10<sup>-8</sup>.
- a. If NaOH were added to this buffer, the [HONH<sub>3</sub><sup>+</sup>] would decrease.
- b. If  $[HONH_2] = [HONH_3^+]$  in this buffer, pH = 8.0.
- c. Adding more HONH<sub>2</sub> to the initial buffer will increase the pH.
- d. If [HONH<sub>3</sub><sup>+</sup>] > [HONH<sub>2</sub>] in this buffer, the [H<sup>+</sup>] of the solution will be larger than the K<sub>a</sub> value.
- e. If  $[HONH_3^+] < [HONH_2]$  in this buffer, the pH of the solution will be smaller than the pK<sub>a</sub> value.

## Best Buffer (p. 96)

The two characteristics of a best buffer are:

- 1. large concentrations of weak acid and conjugate base make for a better buffer than small concentrations.
- 2. equal concentrations of weak acid and conjugate base make for a best buffer.

## Best Buffer (cont) – p. 96

When [weak acid] = [conjugate base] in a best buffer:

$$pH = pK_a + log \frac{[base]}{[acid]} = pK_a + log(1.0)$$

## Best Buffer (cont) – p. 96

When [weak acid] = [conjugate base] in a best buffer:

$$pH = pK_a + \log \frac{[base]}{[acid]} = pK_a + \log(1.0)$$
$$pH = pK_a + 0 = pK_a$$

## Best Buffer (cont) – p. 96

When [weak acid] = [conjugate base] in a best buffer:

$$pH = pK_a + \log \frac{[base]}{[acid]} = pK_a + \log(1.0)$$
$$pH = pK_a + 0 = pK_a$$

A best buffer has a pH value close to its pK<sub>a</sub> value (pH ≈ pK<sub>a</sub> for a best buffer).

### Values for K<sub>a</sub> for Some Common Monoprotic Acids

| Table 14.2Values of $K_a$ for Some Common Monoprotic Acids                                                                                                          |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                   |                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| Formula                                                                                                                                                             | Name                                                                                                                                                                                                               | Value of $K_{a}^{*}$                                                                                                                                                                                                                                                              |                               |
| $\begin{split} &HSO_4^{-} \\ &HClO_2 \\ &HC_2H_2ClO_2 \\ &HF \\ &HNO_2 \\ &HC_2H_3O_2 \\ &[Al(H_2O)_6]^{3+} \\ &HOCl \\ &HCN \\ &NH_4^{+} \\ &HOC_6H_5 \end{split}$ | Hydrogen sulfate ion<br>Chlorous acid<br>Monochloracetic acid<br>Hydrofluoric acid<br>Nitrous acid<br>Acetic acid<br>Hydrated aluminum(III) ion<br>Hypochlorous acid<br>Hydrocyanic acid<br>Ammonium ion<br>Phenol | $\begin{array}{c} 1.2 \times 10^{-2} \\ 1.2 \times 10^{-2} \\ 1.35 \times 10^{-3} \\ 7.2 \times 10^{-4} \\ 4.0 \times 10^{-4} \\ 1.8 \times 10^{-5} \\ 1.4 \times 10^{-5} \\ 3.5 \times 10^{-8} \\ 6.2 \times 10^{-10} \\ 5.6 \times 10^{-10} \\ 1.6 \times 10^{-10} \end{array}$ | →<br>Increasing acid strength |

Example  $K_a$  reaction for  $HNO_2$ ,  $K_a = 4.0 \times 10^{-4}$ :  $HNO_2(aq) + H_2O(I) \leftrightarrow H_3O^+(aq) + NO_2^-(aq)$ or:  $HNO_2(aq) \leftrightarrow H^+(aq) + NO_2^-(aq)$ 

Which of the following combinations will be best to buffer a solution at pH = 9.5?

a.  $HC_2H_3O_2$  ( $K_a = 1.8 \times 10^{-5}$ ) +  $NaC_2H_3O_2$ 

b. 
$$NaH_2PO_4$$
 (K<sub>a</sub> = 6.2 x 10<sup>-8</sup>) +  $Na_2HPO_4$ 

c.  $NH_4CI + NH_3 (K_b = 1.8 \times 10^{-5})$ 

Which of the following combinations will be best to buffer a solution at pH = 9.5? a.  $HC_2H_3O_2$  ( $K_a = 1.8 \times 10^{-5}$ ) +  $NaC_2H_3O_2$  $pK_a = -log(1.8 \times 10^{-5}) = 4.74$ 

b.  $NaH_2PO_4$  (K<sub>a</sub> = 6.2 x 10<sup>-8</sup>) +  $Na_2HPO_4$ 

c.  $NH_4CI + NH_3 (K_b = 1.8 \times 10^{-5})$ 

Which of the following combinations will be best to buffer a solution at pH = 9.5? a.  $HC_{2}H_{3}O_{2}$  (K<sub>2</sub> = 1.8 x 10<sup>-5</sup>) +  $NaC_{2}H_{3}O_{2}$  $pK_{a} = -\log(1.8 \times 10^{-5}) = 4.74$ b.  $NaH_2PO_4$  (K<sub>a</sub> = 6.2 x 10<sup>-8</sup>) +  $Na_2HPO_4$  $pK_{a} = -\log(6.2 \times 10^{-8}) = 7.21$ c.  $NH_4CI + NH_3 (K_b = 1.8 \times 10^{-5})$ 

Which of the following combinations will be best to buffer a solution at pH = 9.5? a.  $HC_{2}H_{3}O_{2}$  (K<sub>a</sub> = 1.8 x 10<sup>-5</sup>) +  $NaC_{2}H_{3}O_{2}$  $pK_{a} = -log(1.8 \times 10^{-5}) = 4.74$ b.  $NaH_2PO_4$  (K<sub>a</sub> = 6.2 x 10<sup>-8</sup>) +  $Na_2HPO_4$  $pK_{a} = -\log(6.2 \times 10^{-8}) = 7.21$ c.  $NH_4CI + NH_3 (K_b = 1.8 \times 10^{-5})$  $pK_a = -\log(1.0 \times 10^{-14}/1.8 \times 10^{-5}) = 9.26$ 

## Lecture Question (p. 98.75)

- Given:  $K_b$  for  $NH_3 \approx 1 \times 10^{-5}$  and  $K_b$  for  $C_5H_5N \approx 1 \times 10^{-9}$ . Which of the following weak baseconjugate acid pairs should be used to form the best buffer at pH = 5.0.
- a.  $NH_3 + NH_4^+$
- b.  $NH_3 + C_5H_5NH^+$
- c.  $C_5H_5N + C_5H_5NH^+$
- d.  $C_5H_5N + NH_4^+$

## Lecture Question (p. 98.75)

- Given:  $K_b$  for  $NH_3 \approx 1 \times 10^{-5}$  and  $K_b$  for  $C_5H_5N \approx 1 \times 10^{-9}$ . Which of the following weak baseconjugate acid pairs should be used to form the best buffer at pH = 5.0.
- a.  $NH_3 + NH_4^+$
- b.  $NH_3 + C_5H_5NH^+$
- c.  $C_5H_5N + C_5H_5NH^+$
- d.  $C_5H_5N + NH_4^+$

#### Effect of Added H<sup>+</sup> or OH<sup>-</sup> on Buffered System



Added H<sup>+</sup> or OH<sup>-</sup> does change [base] and [acid]. But the ratio of [base]/[acid] doesn't change much, so pH doesn't change much when H<sup>+</sup> or OH<sup>-</sup> is added.