Lecture 6

Titrations I

Titrations refer to running a controlled acid-base reaction using a buret. This week, we will study four types acid-base titrations in detail.

Acid and Base Titration Apparatus flask + buret

Photo © Brooks/Cole, Cengage Learning Company. All rights reserved.

Titrations refer to running a controlled acid-base reaction using a buret. This week, we will study four types acid-base titrations in detail. They are:

1. Strong acid (like HCl) titrated by a strong base (like KOH) – SA by SB

Titrations refer to running a controlled acid-base reaction using a buret. This week, we will study four types acid-base titrations in detail. They are:

- 1. Strong acid (like HCl) titrated by a strong base (like KOH) SA by SB
- 2. Strong base [like Ca(OH)₂] titrated by a strong acid (like HNO_3) SB by SA

- Titrations refer to running a controlled acid-base reaction using a buret. This week, we will study four types acid-base titrations in detail. They are:
- 1. Strong acid (like HCl) titrated by a strong base (like KOH) SA by SB
- 2. Strong base [like Ca(OH)₂] titrated by a strong acid (like HNO₃) SB by SA
- 3. Weak acid (like $HC_2H_3O_2$, $K_a = 1.8 \times 10^{-5}$) titrated by a strong base (like NaOH) – WA by SB

- Titrations refer to running a controlled acid-base reaction using a buret. This week, we will study four types acid-base titrations in detail. They are:
- 1. Strong acid (like HCl) titrated by a strong base (like KOH) SA by SB
- 2. Strong base [like Ca(OH)₂] titrated by a strong acid (like HNO₃) SB by SA
- 3. Weak acid (like HC₂H₃O₂, K_a = 1.8 x 10⁻⁵) titrated by a strong base (like NaOH) – WA by SB
- 4. Weak base (like $C_6H_5NH_2$, $K_b = 3.8 \times 10^{-10}$) by a strong acid (like HI) WB by SA

Titration Definitions (p. 100)

 <u>Titrant</u> – substance in buret that is added in controlled amounts; always a strong acid or a strong base.

 <u>Neutralization reaction</u> – reaction between beaker contents and the titrant; always assumed to go to completion because a strong acid and/or strong base is reacted.

Titrant-stuff in the buret

Photo © Brooks/Cole, Cengage Learning Company. All rights reserved.

Titration Definitions (p. 100)

 <u>Titrant</u> – substance in buret that is added in controlled amounts; always a strong acid or a strong base.

 <u>Neutralization reaction</u> – reaction between beaker contents and the titrant; always assumed to go to completion because a strong acid and/or strong base is reacted.

Example Neutralization Reactions

- 1. Strong acid (like HCl) titrated by a strong base (like KOH): $H^+ + OH^- \rightarrow H_2O$
- 2. Strong base [like Ca(OH)₂] titrated by a strong acid (like HNO₃): $OH^- + H^+ \rightarrow H_2O$
- 3. Weak acid (like $HC_2H_3O_2$, $K_a = 1.8 \times 10^{-5}$) titrated by a strong base (like NaOH): $HC_2H_3O_2 + OH^2 \rightarrow C_2H_3O_2^2 + H_2O$
- 4. Weak base (like $C_6H_5NH_2$, $K_b = 3.8 \times 10^{-10}$) by a strong acid (like HI):

 $C_6H_5NH_2 + H^+ \rightarrow C_6H_5NH_3^+$

More Definitions (p. 100)

 Equivalence Point – when enough titrant has been added to exactly neutralize (react with) all the acid or base present initially. At the equivalence point (assuming a 1:1 mol relationship in balanced equation):

moles acid = moles base

Indicators mark the Equivalence Point

Photo © Brooks/Cole, Cengage Learning Company. All rights reserved.

More Definitions (p. 100)

 Equivalence Point – when enough titrant has been added to exactly neutralize (react with) all the acid or base present initially. At the equivalence point (assuming a 1:1 mol relationship in balanced equation):

moles acid = moles base

More Definitions

To determine moles of solute, we multiply the molarity times the volume.

 $M \times V = \frac{mol}{L} \times L = mol \text{ solute}$

More Definitions (p. 100)

 Equivalence Point – when enough titrant has been added to exactly neutralize (react with) all the acid or base present initially. At the equivalence point (assuming a 1:1 mol relationship in balanced equation):

moles acid = moles base

$$M_A V_A = M_B V_B$$

100.0 mL of 0.500 *M* HF titrated by 1.00 *M* NaOH (p. 104)

What volume of NaOH is required to reach the equivalence point?

100.0 mL of 0.500 *M* HF titrated by 1.00 *M* NaOH (p. 104)

What volume of NaOH is required to reach the equivalence point?

 $M_A V_A = M_B V_B$ (At equiv. point, mol HF = mol OH⁻ added)

 $0.500 M(0.1000 L) = 1.00 M(V_{NaOH})$

V_{NaOH} = 0.0500 L

Working with mmols (p. 101)

Molarity can also be defined as mmol/mL:

molarity = *M* = mol/L = mmol/mL

$$M \times V = \frac{\text{mmol}}{\text{mL}} \times \text{mL} = \text{mmol solute}$$

100.0 mL of 0.500 *M* HF titrated by 1.00 *M* NaOH (p. 104)

What volume of NaOH is required to reach the equivalence point?

 $M_{\rm A}V_{\rm A} = M_{\rm B}V_{\rm B}$, 0.500 M(0.1000 L) = 1.00 M(V_{NaOH}), V_{NaOH} = 0.0500 L

Using mmol/mL definition for molarity:

 $M_{\rm A}V_{\rm A} = M_{\rm B}V_{\rm B}$, 0.500 $M(100.0 \text{ mL}) = 1.00 M(V_{\rm NaOH})$, $V_{\rm NaOH} = 50.0 \text{ mL}$

Titration (pH) Curve – a plot of pH of solution vs. volume of titrant added

Titration (pH) Curve – a plot of pH of solution vs. volume of titrant added

pH curve for a strong acid titrated by strong base

pH curve for a strong base titrated by strong acid

Vol 1.0 M HCl added

More Titration (pH) Curves

pH curve for a weak acid titrated by strong base

pH curve for weak base titrated by strong acid

Clicker Question

Consider the following three titrations:

I. 50.0 mL of 0.1 M HCO₂H (K_a ≈ 1 x 10⁻⁴) by 0.20 M KOH II. 50.0 mL of 0.1 M HOC₆H₅ (K_a ≈ 1 x 10⁻¹⁰) by 0.20 M KOH III. 50.0 mL of 0.1 M HNO₃ by 0.20 M KOH

Which of the following statements is false?

- a. The HNO₃ titration has a lower pH initially before the titration begins as compared to the other titrations.
- b. At 12.5 mL KOH added, the HCO₂H titration has pH \approx 4.0.
- c. At the halfway point to equivalence for the HOC_6H_5 titration, the pH is acidic.
- d. The pH of the HOC₆H₅ titration has a higher pH at the equivalence point as compared to the HCO₂H titration.
- e. The pH of the HNO_3 titration is 7.0 at 25.0 mL KOH added.

Multiple Acid Titration (pH) Curves

Clicker Question

Consider the following two titrations:

I. 50.0 mL of 0.1 M HCO₂H ($K_a \approx 1 \ge 10^{-4}$) by 0.20 M KOH II. 50.0 mL of 0.1 M HOC₆H₅ ($K_a \approx 1 \ge 10^{-10}$) by 0.20 M KOH

Which of the following statements is false?

- a. The HCO₂H titration has a lower pH initially before the titration begins as compared to the HOC₆H₅ titration.
- b. At 12.5 mL KOH added, the HCO_2H titration has pH \approx 4.0.
- c. At the halfway point to equivalence for the HOC₆H₅ titration, the pH is acidic.
- d. The pH of the HOC₆H₅ titration has a higher pH at the equivalence point as compared to the HCO₂H titration.
- e. The pH of the HCO_2H titration is basic at 25.0 mL KOH added.

Strong Acid – Strong Base Titrations

Titration (pH) Curve – a plot of pH of solution vs. volume of titrant added

pH curve for a strong acid titrated by strong base

pH curve for a strong base titrated by strong acid

Vol 1.0 M HCl added

Weak Acid-Strong Base Titrations

Weak Acid vs. Strong Acid Titration

Vol NaOH

Weak Acid-Strong Base Titrations

Multiple Acid Titration (pH) Curves

Clicker Question

Consider the following three titrations:

I. 50.0 mL of 0.1 M HCO₂H (K_a ≈ 1 x 10⁻⁴) by 0.20 M KOH II. 50.0 mL of 0.1 M HOC₆H₅ (K_a ≈ 1 x 10⁻¹⁰) by 0.20 M KOH III. 50.0 mL of 0.1 M HNO₃ by 0.20 M KOH

Which of the following statements is false?

- a. The HNO₃ titration has a lower pH initially before the titration begins as compared to the other titrations.
- b. At 12.5 mL KOH added, the HCO₂H titration has pH \approx 4.0.
- c. At the halfway point to equivalence for the HOC_6H_5 titration, the pH is acidic.
- d. The pH of the HOC₆H₅ titration has a higher pH at the equivalence point as compared to the HCO₂H titration.
- e. The pH of the HNO_3 titration is 7.0 at 25.0 mL KOH added.

Clicker Question

Consider the following two titrations:

I. 50.0 mL of 0.1 M HCO₂H ($K_a \approx 1 \ge 10^{-4}$) by 0.20 M KOH II. 50.0 mL of 0.1 M HOC₆H₅ ($K_a \approx 1 \ge 10^{-10}$) by 0.20 M KOH

Which of the following statements is false?

- a. The HCO₂H titration has a lower pH initially before the titration begins as compared to the HOC₆H₅ titration.
- b. At 12.5 mL KOH added, the HCO_2H titration has pH \approx 4.0.
- c. At the halfway point to equivalence for the HOC₆H₅ titration, the pH is acidic.
- d. The pH of the HOC₆H₅ titration has a higher pH at the equivalence point as compared to the HCO₂H titration.
- e. The pH of the HCO_2H titration is basic at 25.0 mL KOH added.

Multiple Acid Titration (pH) Curves

Titration (pH) Curve – a plot of pH of solution vs. volume of titrant added

pH curve for a strong acid titrated by strong base

pH curve for a strong base titrated by strong acid

Vol 1.0 M HCl added

Working with mmols (p. 101)

Molarity can also be defined as mmol/mL:

molarity = *M* = mol/L = mmol/mL

 $M \times V = \frac{\text{mmol}}{\text{mL}} \times \text{mL} = \text{mmol solute}$

 $M_A V_A = M_B V_B$ mmol acid = mmol base with *M* in mmol/mL and V in mL

At equivalence point.