## Lecture 6

Titrations I

## Titrations (p. 101)

Titrations refer to running a controlled acid-base reaction using a buret. This week, we will study four types acid-base titrations in detail.

## Acid and Base Titration Apparatus flask + buret



Photo © Brooks/Cole, Cengage Learning Company. All rights reserved.

## Titrations (p. 101)

Titrations refer to running a controlled acid-base reaction using a buret. This week, we will study four types acid-base titrations in detail. They are:

1. Strong acid (like HCl ) titrated by a strong base (like KOH) - SA by SB

## Titrations (p. 101)

Titrations refer to running a controlled acid-base reaction using a buret. This week, we will study four types acid-base titrations in detail. They are:

1. Strong acid (like HCl ) titrated by a strong base (like KOH) - SA by SB
2. Strong base $\left[\right.$ like $\left.\mathrm{Ca}(\mathrm{OH})_{2}\right]$ titrated by a strong acid (like $\mathrm{HNO}_{3}$ ) - SB by SA

## Titrations (p. 101)

Titrations refer to running a controlled acid-base reaction using a buret. This week, we will study four types acid-base titrations in detail. They are:

1. Strong acid (like HCl ) titrated by a strong base (like KOH) - SA by SB
2. Strong base [like $\mathrm{Ca}(\mathrm{OH})_{2}$ ] titrated by a strong acid (like $\mathrm{HNO}_{3}$ ) - SB by SA
3. Weak acid (like $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}, \mathrm{~K}_{\mathrm{a}}=1.8 \times 10^{-5}$ ) titrated by a strong base (like NaOH ) - WA by SB

## Titrations (p. 101)

Titrations refer to running a controlled acid-base reaction using a buret. This week, we will study four types acid-base titrations in detail. They are:

1. Strong acid (like HCl ) titrated by a strong base (like KOH) - SA by SB
2. Strong base [like $\mathrm{Ca}(\mathrm{OH})_{2}$ ] titrated by a strong acid (like $\mathrm{HNO}_{3}$ ) - SB by SA
3. Weak acid (like $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}, \mathrm{~K}_{\mathrm{a}}=1.8 \times 10^{-5}$ ) titrated by a strong base (like NaOH ) - WA by SB
4. Weak base (like $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}, \mathrm{~K}_{\mathrm{b}}=3.8 \times 10^{-10}$ ) by a strong acid (like HI ) - WB by SA

## Titration Definitions (p. 100)

- Titrant - substance in buret that is added in controlled amounts; always a strong acid or a strong base.
- Neutralization reaction - reaction between beaker contents and the titrant; always assumed to go to completion because a strong acid and/or strong base is reacted.


## Titrant-stuff in the buret



Photo © Brooks/Cole, Cengage Learning Company. All rights reserved.

## Titration Definitions (p. 100)

- Titrant - substance in buret that is added in controlled amounts; always a strong acid or a strong base.
- Neutralization reaction - reaction between beaker contents and the titrant; always assumed to go to completion because a strong acid and/or strong base is reacted.


## Example Neutralization Reactions

1. Strong acid (like HCl ) titrated by a strong base (like KOH ): $\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}$
2. Strong base [like $\mathrm{Ca}(\mathrm{OH})_{2}$ ] titrated by a strong acid (like $\mathrm{HNO}_{3}$ ): $\mathrm{OH}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{H}_{2} \mathrm{O}$
3. Weak acid (like $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}, \mathrm{~K}_{\mathrm{a}}=1.8 \times 10^{-5}$ ) titrated by a strong base (like NaOH ):
$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{OH}^{-} \rightarrow \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}+\mathrm{H}_{2} \mathrm{O}$
4. Weak base (like $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}, \mathrm{~K}_{\mathrm{b}}=3.8 \times 10^{-10}$ ) by a strong acid (like HI):
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}+\mathrm{H}^{+} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}$

## More Definitions (p. 100)

- Equivalence Point - when enough titrant has been added to exactly neutralize (react with) all the acid or base present initially. At the equivalence point (assuming a 1:1 mol relationship in balanced equation):
moles acid = moles base


## Indicators mark the Equivalence Point

 rights reserved.

## More Definitions (p. 100)

- Equivalence Point - when enough titrant has been added to exactly neutralize (react with) all the acid or base present initially. At the equivalence point (assuming a 1:1 mol relationship in balanced equation):
moles acid = moles base


## More Definitions

To determine moles of solute, we multiply the molarity times the volume.

$$
M \times V=\frac{\mathrm{mol}}{\mathrm{~L}} \times \mathrm{L}=\text { mol solute }
$$

## More Definitions (p. 100)

- Equivalence Point - when enough titrant has been added to exactly neutralize (react with) all the acid or base present initially. At the equivalence point (assuming a 1:1 mol relationship in balanced equation):
moles acid = moles base

$$
M_{\mathrm{A}} \mathrm{~V}_{\mathrm{A}}=M_{\mathrm{B}} \mathrm{~V}_{\mathrm{B}}
$$

# 100.0 mL of 0.500 M HF titrated by 1.00 M NaOH (p. 104) 

What volume of NaOH is required to reach the equivalence point?

## 100.0 mL of 0.500 M HF titrated by 1.00 M NaOH (p. 104)

What volume of NaOH is required to reach the equivalence point?
$M_{\mathrm{A}} \mathrm{V}_{\mathrm{A}}=M_{\mathrm{B}} \mathrm{V}_{\mathrm{B}}$ (At equiv. point, mol $\mathrm{HF}=\mathrm{mol} \mathrm{OH}^{-}$added)
$0.500 \mathrm{M}(0.1000 \mathrm{~L})=1.00 \mathrm{M}\left(\mathrm{V}_{\mathrm{NaOH}}\right)$
$\mathrm{V}_{\mathrm{NaOH}}=0.0500 \mathrm{~L}$

## Working with mmols (p. 101)

## Molarity can also be defined as $\mathrm{mmol} / \mathrm{mL}$ :

molarity $=M=\mathrm{mol} / \mathrm{L}=\mathrm{mmol} / \mathrm{mL}$

$$
M \times \mathrm{V}=\frac{\mathrm{mmol}}{\mathrm{~mL}} \times \mathrm{mL}=\text { mmol solute }
$$

## 100.0 mL of 0.500 M HF titrated by 1.00 M NaOH (p. 104)

What volume of NaOH is required to reach the equivalence point?
$M_{A} \mathrm{~V}_{\mathrm{A}}=M_{\mathrm{B}} \mathrm{V}_{\mathrm{B}}, 0.500 \mathrm{M}(0.1000 \mathrm{~L})=1.00 \mathrm{M}\left(\mathrm{V}_{\mathrm{NaOH}}\right)$,
$\mathrm{V}_{\mathrm{NaOH}}=0.0500 \mathrm{~L}$
Using $\mathrm{mmol} / \mathrm{mL}$ definition for molarity:
$M_{\mathrm{A}} \mathrm{V}_{\mathrm{A}}=M_{\mathrm{B}} \mathrm{V}_{\mathrm{B}}, 0.500 \mathrm{M}(100.0 \mathrm{~mL})=1.00 \mathrm{M}\left(\mathrm{V}_{\mathrm{NaOH}}\right)$,
$\mathrm{V}_{\mathrm{NaOH}}=50.0 \mathrm{~mL}$

Titration (pH) Curve - a plot of pH of solution vs. volume of titrant added

## Titration (pH) Curve - a plot of pH of solution vs. volume of titrant added

pH curve for a strong acid titrated by strong base

pH curve for a strong base titrated by strong acid


## More Titration (pH) Curves

pH curve for a weak acid titrated by strong base

pH curve for weak base titrated by strong acid


## Clicker Question

Consider the following three titrations:
I. 50.0 mL of $0.1 \mathrm{M} \mathrm{HCO}_{2} \mathrm{H}\left(\mathrm{K}_{\mathrm{a}} \approx 1 \times 10^{-4}\right)$ by 0.20 M KOH
II. 50.0 mL of $0.1 \mathrm{M} \mathrm{HOC}_{6} \mathrm{H}_{5}\left(\mathrm{~K}_{\mathrm{a}} \approx 1 \times 10^{-10}\right)$ by 0.20 M KOH
III. 50.0 mL of $0.1 \mathrm{M} \mathrm{HNO}_{3}$ by 0.20 M KOH

Which of the following statements is false?
a. The $\mathrm{HNO}_{3}$ titration has a lower pH initially before the titration begins as compared to the other titrations.
b. At 12.5 mL KOH added, the $\mathrm{HCO}_{2} \mathrm{H}$ titration has $\mathrm{pH} \approx 4.0$.
c. At the halfway point to equivalence for the $\mathrm{HOC}_{6} \mathrm{H}_{5}$ titration, the pH is acidic.
d. The pH of the $\mathrm{HOC}_{6} \mathrm{H}_{5}$ titration has a higher pH at the equivalence point as compared to the $\mathrm{HCO}_{2} \mathrm{H}$ titration.
e. The pH of the $\mathrm{HNO}_{3}$ titration is 7.0 at 25.0 mL KOH added.

## Multiple Acid Titration (pH) Curves



## Clicker Question

Consider the following two titrations:

$$
\begin{aligned}
& \text { I. } 50.0 \mathrm{~mL} \text { of } 0.1 \mathrm{M} \mathrm{HCO}_{2} \mathrm{H}\left(\mathrm{~K}_{\mathrm{a}} \approx 1 \times 10^{-4}\right) \text { by } 0.20 \mathrm{M} \mathrm{KOH} \\
& \text { II. } 50.0 \mathrm{~mL} \text { of } 0.1 \mathrm{M} \mathrm{HOC}_{6} \mathrm{H}_{5}\left(\mathrm{~K}_{\mathrm{a}} \approx 1 \times 10^{-10}\right) \text { by } 0.20 \mathrm{M} \mathrm{KOH}
\end{aligned}
$$

Which of the following statements is false?
a. The $\mathrm{HCO}_{2} \mathrm{H}$ titration has a lower pH initially before the titration begins as compared to the $\mathrm{HOC}_{6} \mathrm{H}_{5}$ titration.
b. At 12.5 mL KOH added, the $\mathrm{HCO}_{2} \mathrm{H}$ titration has $\mathrm{pH} \approx 4.0$.
c. At the halfway point to equivalence for the $\mathrm{HOC}_{6} \mathrm{H}_{5}$ titration, the pH is acidic.
d. The pH of the $\mathrm{HOC}_{6} \mathrm{H}_{5}$ titration has a higher pH at the equivalence point as compared to the $\mathrm{HCO}_{2} \mathrm{H}$ titration.
e. The pH of the $\mathrm{HCO}_{2} \mathrm{H}$ titration is basic at 25.0 mL KOH added.

## Strong Acid - Strong Base Titrations



## Titration (pH) Curve - a plot of pH of solution vs. volume of titrant added

pH curve for a strong acid titrated by strong base

pH curve for a strong base titrated by strong acid


## Weak Acid-Strong Base Titrations



## Weak Acid vs. Strong Acid Titration $\mathrm{HA}+\mathrm{OH}^{-} \rightarrow \mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O}$



## Weak Acid-Strong Base Titrations



## Multiple Acid Titration (pH) Curves



## Clicker Question

Consider the following three titrations:
I. 50.0 mL of $0.1 \mathrm{M} \mathrm{HCO}_{2} \mathrm{H}\left(\mathrm{K}_{\mathrm{a}} \approx 1 \times 10^{-4}\right)$ by 0.20 M KOH
II. 50.0 mL of $0.1 \mathrm{M} \mathrm{HOC}_{6} \mathrm{H}_{5}\left(\mathrm{~K}_{\mathrm{a}} \approx 1 \times 10^{-10}\right)$ by 0.20 M KOH
III. 50.0 mL of $0.1 \mathrm{M} \mathrm{HNO}_{3}$ by 0.20 M KOH

Which of the following statements is false?
a. The $\mathrm{HNO}_{3}$ titration has a lower pH initially before the titration begins as compared to the other titrations.
b. At 12.5 mL KOH added, the $\mathrm{HCO}_{2} \mathrm{H}$ titration has $\mathrm{pH} \approx 4.0$.
c. At the halfway point to equivalence for the $\mathrm{HOC}_{6} \mathrm{H}_{5}$ titration, the pH is acidic.
d. The pH of the $\mathrm{HOC}_{6} \mathrm{H}_{5}$ titration has a higher pH at the equivalence point as compared to the $\mathrm{HCO}_{2} \mathrm{H}$ titration.
e. The pH of the $\mathrm{HNO}_{3}$ titration is 7.0 at 25.0 mL KOH added.

## Clicker Question

Consider the following two titrations:

$$
\begin{aligned}
& \text { I. } 50.0 \mathrm{~mL} \text { of } 0.1 \mathrm{M} \mathrm{HCO}_{2} \mathrm{H}\left(\mathrm{~K}_{\mathrm{a}} \approx 1 \times 10^{-4}\right) \text { by } 0.20 \mathrm{M} \mathrm{KOH} \\
& \text { II. } 50.0 \mathrm{~mL} \text { of } 0.1 \mathrm{M} \mathrm{HOC}_{6} \mathrm{H}_{5}\left(\mathrm{~K}_{\mathrm{a}} \approx 1 \times 10^{-10}\right) \text { by } 0.20 \mathrm{M} \mathrm{KOH}
\end{aligned}
$$

Which of the following statements is false?
a. The $\mathrm{HCO}_{2} \mathrm{H}$ titration has a lower pH initially before the titration begins as compared to the $\mathrm{HOC}_{6} \mathrm{H}_{5}$ titration.
b. At 12.5 mL KOH added, the $\mathrm{HCO}_{2} \mathrm{H}$ titration has $\mathrm{pH} \approx 4.0$.
c. At the halfway point to equivalence for the $\mathrm{HOC}_{6} \mathrm{H}_{5}$ titration, the pH is acidic.
d. The pH of the $\mathrm{HOC}_{6} \mathrm{H}_{5}$ titration has a higher pH at the equivalence point as compared to the $\mathrm{HCO}_{2} \mathrm{H}$ titration.
e. The pH of the $\mathrm{HCO}_{2} \mathrm{H}$ titration is basic at 25.0 mL KOH added.

## Multiple Acid Titration (pH) Curves



## Titration (pH) Curve - a plot of pH of solution vs. volume of titrant added

pH curve for a strong acid titrated by strong base

pH curve for a strong base titrated by strong acid


## Working with mmols (p. 101)

Molarity can also be defined as $\mathrm{mmol} / \mathrm{mL}$ :

$$
\begin{gathered}
\text { molarity }=M=\mathrm{mol} / \mathrm{L}=\mathrm{mmol} / \mathrm{mL} \\
M \times \mathrm{V}=\frac{\mathrm{mmol}}{\mathrm{~mL}} \times \mathrm{mL}=\mathrm{mmol} \text { solute }
\end{gathered}
$$

$$
M_{A} V_{A}=M_{B} V_{B}
$$

mmol acid $=\mathrm{mmol}$ base
At equivalence point.
with $M$ in $\mathrm{mmol} / \mathrm{mL}$ and $V$ in mL

