Lecture 7

Titrations II

Lecture Question 1 – p 105a

Consider the following 5 titrations:

I. 50.0 mL of 0.1 M HONH₂ ($K_b \approx 1 \times 10^{-8}$) by 0.20 M HBr II. 50.0 mL of 0.1 M HOC₆H₅ ($K_a \approx 1 \times 10^{-10}$) by 0.20 M KOH III. 50.0 mL of 0.1 M Ca(OH)₂ by 0.20 M HBr IV. 50.0 mL of 0.1 M (C₂H₅)₂NH ($K_b \approx 1 \times 10^{-3}$) by 0.20 M HBr V. 50.0 mL of 0.1 M HNO₃ by 0.20 M KOH

Rank these titrations in order of increasing pH at the halfway point to equivalence.

Lecture Question 2 – p 105a

Consider the following 4 titrations:

I. 50.0 mL of 0.1 M HONH₂ ($K_b \approx 1 \times 10^{-8}$) by 0.20 M HBr II. 50.0 mL of 0.1 M HOC₆H₅ ($K_a \approx 1 \times 10^{-10}$) by 0.20 M KOH III. 50.0 mL of 0.1 M Ca(OH)₂ by 0.20 M HBr IV. 50.0 mL of 0.1 M (C₂H₅)₂NH ($K_b \approx 1 \times 10^{-3}$) by 0.20 M HBr

Rank these titrations in order of increasing pH at the equivalence point.

Titration (pH) Curve – a plot of pH of solution vs. volume of titrant added

pH curve for a strong acid titrated by strong base

pH curve for a strong base titrated by strong acid

Vol 1.0 M HCl added

More Titration (pH) Curves

pH curve for a weak acid titrated by strong base

pH curve for weak base titrated by strong acid

Lecture Question 1 – p 105a

Consider the following 5 titrations:

I. 50.0 mL of 0.1 M HONH₂ ($K_b \approx 1 \times 10^{-8}$) by 0.20 M HBr II. 50.0 mL of 0.1 M HOC₆H₅ ($K_a \approx 1 \times 10^{-10}$) by 0.20 M KOH III. 50.0 mL of 0.1 M Ca(OH)₂ by 0.20 M HBr IV. 50.0 mL of 0.1 M (C₂H₅)₂NH ($K_b \approx 1 \times 10^{-3}$) by 0.20 M HBr V. 50.0 mL of 0.1 M HNO₃ by 0.20 M KOH

Rank these titrations in order of increasing pH at the halfway point to equivalence.

Lecture Question 2 – p 105a

Consider the following 4 titrations:

I. 50.0 mL of 0.1 M HONH₂ ($K_b \approx 1 \times 10^{-8}$) by 0.20 M HBr II. 50.0 mL of 0.1 M HOC₆H₅ ($K_a \approx 1 \times 10^{-10}$) by 0.20 M KOH III. 50.0 mL of 0.1 M Ca(OH)₂ by 0.20 M HBr IV. 50.0 mL of 0.1 M (C₂H₅)₂NH ($K_b \approx 1 \times 10^{-3}$) by 0.20 M HBr

Rank these titrations in order of increasing pH at the equivalence point.

Lecture Question 1 – p 105a

Consider the following 5 titrations:

I. 50.0 mL of 0.1 M HONH₂ ($K_b \approx 1 \times 10^{-8}$) by 0.20 M HBr II. 50.0 mL of 0.1 M HOC₆H₅ ($K_a \approx 1 \times 10^{-10}$) by 0.20 M KOH III. 50.0 mL of 0.1 M Ca(OH)₂ by 0.20 M HBr IV. 50.0 mL of 0.1 M (C₂H₅)₂NH ($K_b \approx 1 \times 10^{-3}$) by 0.20 M HBr V. 50.0 mL of 0.1 M HNO₃ by 0.20 M KOH

Rank these titrations in order of increasing pH at the halfway point to equivalence.

Titration (pH) Curve – a plot of pH of solution vs. volume of titrant added

pH curve for a strong acid titrated by strong base

pH curve for a strong base titrated by strong acid

Vol 1.0 M HCl added

More Titration (pH) Curves

pH curve for a weak acid titrated by strong base

pH curve for weak base titrated by strong acid

Multiple Acid Titration (pH) Curves

Consider the following 5 titrations:

I. 50.0 mL of 0.1 M HONH₂ ($K_b \approx 1 \times 10^{-8}$) by 0.20 M HBr II. 50.0 mL of 0.1 M HOC₆H₅ ($K_a \approx 1 \times 10^{-10}$) by 0.20 M KOH III. 50.0 mL of 0.1 M Ca(OH)₂ by 0.20 M HBr IV. 50.0 mL of 0.1 M (C₂H₅)₂NH ($K_b \approx 1 \times 10^{-3}$) by 0.20 M HBr V. 50.0 mL of 0.1 M HNO₃ by 0.20 M KOH

Rank these titrations in order of increasing pH at the halfway point to equivalence.

Consider the following 5 titrations:

I. 50.0 mL of 0.1 M HONH₂ ($K_b \approx 1 \times 10^{-8}$) by 0.20 M HBr II. 50.0 mL of 0.1 M HOC₆H₅ ($K_a \approx 1 \times 10^{-10}$) by 0.20 M KOH III. 50.0 mL of 0.1 M Ca(OH)₂ by 0.20 M HBr IV. 50.0 mL of 0.1 M (C₂H₅)₂NH ($K_b \approx 1 \times 10^{-3}$) by 0.20 M HBr V. 50.0 mL of 0.1 M HNO₃ by 0.20 M KOH

Rank these titrations in order of increasing pH at the halfway point to equivalence.

Consider the following 4 titrations:

I. 50.0 mL of 0.1 M HONH₂ ($K_b \approx 1 \times 10^{-8}$) by 0.20 M HBr II. 50.0 mL of 0.1 M HOC₆H₅ ($K_a \approx 1 \times 10^{-10}$) by 0.20 M KOH III. 50.0 mL of 0.1 M Ca(OH)₂ by 0.20 M HBr IV. 50.0 mL of 0.1 M (C₂H₅)₂NH ($K_b \approx 1 \times 10^{-3}$) by 0.20 M HBr

Rank these titrations in order of increasing pH at the equivalence point.

Titration (pH) Curve – a plot of pH of solution vs. volume of titrant added

pH curve for a strong acid titrated by strong base

pH curve for a strong base titrated by strong acid

Vol 1.0 M HCl added

More Titration (pH) Curves

pH curve for a weak acid titrated by strong base

pH curve for weak base titrated by strong acid

Consider the following 4 titrations:

I. 50.0 mL of 0.1 M HONH₂ ($K_b \approx 1 \times 10^{-8}$) by 0.20 M HBr II. 50.0 mL of 0.1 M HOC₆H₅ ($K_a \approx 1 \times 10^{-10}$) by 0.20 M KOH III. 50.0 mL of 0.1 M Ca(OH)₂ by 0.20 M HBr IV. 50.0 mL of 0.1 M (C₂H₅)₂NH ($K_b \approx 1 \times 10^{-3}$) by 0.20 M HBr

Rank these titrations in order of increasing pH at the equivalence point.

Consider the following 4 titrations:

I. 50.0 mL of 0.1 M HONH₂ ($K_b \approx 1 \times 10^{-8}$) by 0.20 M HBr II. 50.0 mL of 0.1 M HOC₆H₅ ($K_a \approx 1 \times 10^{-10}$) by 0.20 M KOH III. 50.0 mL of 0.1 M Ca(OH)₂ by 0.20 M HBr IV. 50.0 mL of 0.1 M (C₂H₅)₂NH ($K_b \approx 1 \times 10^{-3}$) by 0.20 M HBr

Rank these titrations in order of increasing pH at the equivalence point.

Consider the following 5 titrations:

I. 50.0 mL of 0.1 M HONH₂ ($K_b \approx 1 \times 10^{-8}$) by 0.20 M HBr II. 50.0 mL of 0.1 M HOC₆H₅ ($K_a \approx 1 \times 10^{-10}$) by 0.20 M KOH III. 50.0 mL of 0.1 M Ca(OH)₂ by 0.20 M HBr IV. 50.0 mL of 0.1 M (C₂H₅)₂NH ($K_b \approx 1 \times 10^{-3}$) by 0.20 M HBr V. 50.0 mL of 0.1 M HNO₃ by 0.20 M KOH

Rank these titrations in order of increasing pH at the halfway point to equivalence.

Strong Acid – Strong Base Titrations

Weak Acid vs. Strong Acid Titration

Vol NaOH

Weak Acid-Strong Base Titrations

Consider the following two titrations:

I. 50.0 mL of 0.1 M HCO₂H ($K_a \approx 1 \times 10^{-4}$) by 0.20 M KOH II. 50.0 mL of 0.1 M HOC₆H₅ ($K_a \approx 1 \times 10^{-10}$) by 0.20 M KOH III. 50.0 mL of 0.1 M HNO₃ by 0.20 M KOH

Which of the following statements is false?

- a. The HNO₃ titration has a lower pH initially before the titration begins as compared to the other titrations.
- b. At 12.5 mL KOH added, the HCO₂H titration has pH \approx 4.0.
- c. At the halfway point to equivalence for the HOC_6H_5 titration, the pH is acidic.
- d. The pH of the HOC₆H₅ titration has a higher pH at the equivalence point as compared to the HCO₂H titration.
- e. The pH of the HNO_3 titration is 7.0 at 25.0 mL KOH added.

Consider the following two titrations:

I. 50.0 mL of 0.1 M HCO₂H ($K_a \approx 1 \times 10^{-4}$) by 0.20 M KOH II. 50.0 mL of 0.1 M HOC₆H₅ ($K_a \approx 1 \times 10^{-10}$) by 0.20 M KOH III. 50.0 mL of 0.1 M HNO₃ by 0.20 M KOH

Which of the following statements is false?

- a. The HNO₃ titration has a lower pH initially before the titration begins as compared to the other titrations.
- b. At 12.5 mL KOH added, the HCO₂H titration has pH \approx 4.0.
- c. At the halfway point to equivalence for the HOC₆H₅ titration, the pH is acidic.
- d. The pH of the HOC₆H₅ titration has a higher pH at the equivalence point as compared to the HCO₂H titration.
- e. The pH of the HNO_3 titration is 7.0 at 25.0 mL KOH added.

Multiple Acid Titration (pH) Curves

Weak Acid-Strong Base Titrations

Weak Acid vs. Strong Acid Titration

Vol NaOH

Titration (pH) Curve – a plot of pH of solution vs. volume of titrant added

pH curve for a strong acid titrated by strong base

pH curve for a strong base titrated by strong acid

Vol 1.0 M HCl added

Weak Base – Strong Acid Titration

Consider the following 5 titrations:

I. 50.0 mL of 0.1 M HONH₂ ($K_b \approx 1 \times 10^{-8}$) by 0.20 M HBr II. 50.0 mL of 0.1 M HOC₆H₅ ($K_a \approx 1 \times 10^{-10}$) by 0.20 M KOH III. 50.0 mL of 0.1 M Ca(OH)₂ by 0.20 M HBr IV. 50.0 mL of 0.1 M (C₂H₅)₂NH ($K_b \approx 1 \times 10^{-3}$) by 0.20 M HBr V. 50.0 mL of 0.1 M HNO₃ by 0.20 M KOH

Rank these titrations in order of increasing pH at the halfway point to equivalence.

Titration (pH) Curve – a plot of pH of solution vs. volume of titrant added

pH curve for a strong acid titrated by strong base

pH curve for a strong base titrated by strong acid

Vol 1.0 M HCl added

More Titration (pH) Curves

pH curve for a weak acid titrated by strong base

pH curve for weak base titrated by strong acid

Consider the following 5 titrations:

I. 50.0 mL of 0.1 M HONH₂ ($K_b \approx 1 \times 10^{-8}$) by 0.20 M HBr II. 50.0 mL of 0.1 M HOC₆H₅ ($K_a \approx 1 \times 10^{-10}$) by 0.20 M KOH III. 50.0 mL of 0.1 M Ca(OH)₂ by 0.20 M HBr IV. 50.0 mL of 0.1 M (C₂H₅)₂NH ($K_b \approx 1 \times 10^{-3}$) by 0.20 M HBr V. 50.0 mL of 0.1 M HNO₃ by 0.20 M KOH

Rank these titrations in order of increasing pH at the halfway point to equivalence.

Consider the following 5 titrations:

I. 50.0 mL of 0.1 M HONH₂ ($K_b \approx 1 \times 10^{-8}$) by 0.20 M HBr II. 50.0 mL of 0.1 M HOC₆H₅ ($K_a \approx 1 \times 10^{-10}$) by 0.20 M KOH III. 50.0 mL of 0.1 M Ca(OH)₂ by 0.20 M HBr IV. 50.0 mL of 0.1 M (C₂H₅)₂NH ($K_b \approx 1 \times 10^{-3}$) by 0.20 M HBr V. 50.0 mL of 0.1 M HNO₃ by 0.20 M KOH

Rank these titrations in order of increasing pH at the halfway point to equivalence.

Consider the following 4 titrations:

I. 50.0 mL of 0.1 M HONH₂ ($K_b \approx 1 \times 10^{-8}$) by 0.20 M HBr II. 50.0 mL of 0.1 M HOC₆H₅ ($K_a \approx 1 \times 10^{-10}$) by 0.20 M KOH III. 50.0 mL of 0.1 M Ca(OH)₂ by 0.20 M HBr IV. 50.0 mL of 0.1 M (C₂H₅)₂NH ($K_b \approx 1 \times 10^{-3}$) by 0.20 M HBr

Rank these titrations in order of increasing pH at the equivalence point.

Titration (pH) Curve – a plot of pH of solution vs. volume of titrant added

pH curve for a strong acid titrated by strong base

pH curve for a strong base titrated by strong acid

Vol 1.0 M HCl added

More Titration (pH) Curves

pH curve for a weak acid titrated by strong base

pH curve for weak base titrated by strong acid

Consider the following 4 titrations:

I. 50.0 mL of 0.1 M HONH₂ ($K_b \approx 1 \times 10^{-8}$) by 0.20 M HBr II. 50.0 mL of 0.1 M HOC₆H₅ ($K_a \approx 1 \times 10^{-10}$) by 0.20 M KOH III. 50.0 mL of 0.1 M Ca(OH)₂ by 0.20 M HBr IV. 50.0 mL of 0.1 M (C₂H₅)₂NH ($K_b \approx 1 \times 10^{-3}$) by 0.20 M HBr

Rank these titrations in order of increasing pH at the equivalence point.

Consider the following 4 titrations:

I. 50.0 mL of 0.1 M HONH₂ ($K_b \approx 1 \times 10^{-8}$) by 0.20 M HBr II. 50.0 mL of 0.1 M HOC₆H₅ ($K_a \approx 1 \times 10^{-10}$) by 0.20 M KOH III. 50.0 mL of 0.1 M Ca(OH)₂ by 0.20 M HBr IV. 50.0 mL of 0.1 M (C₂H₅)₂NH ($K_b \approx 1 \times 10^{-3}$) by 0.20 M HBr

Rank these titrations in order of increasing pH at the equivalence point.