
Lecture 8

Entropy Introduction

Lecture Room

The 1 pm lecture for the rest of the summer will be in 100 Noyes Lab.

Figure 6.5: Coffee-cup Calorimeter

Consider the seven processes described on p. 16 of the Handouts packet. How many of these processes have a positive value for ΔS_{sys} ?

a. 2 b. 3 c. 4 d. 5 e. 6 f. 7 (all)

Consider the seven processes described on p. 16 of the Handouts packet. How many of these processes have a positive value for ΔS_{svs} ?

a. 2 b. 3 c. 4 d. 5 e. 6 f. 7 (all) Processes 2, 3, 5, and 7 all have positive values for ΔS_{sys} . All of these processes show an increase in positional probability as reactants are converted to products.

Consider the six processes described on p. 19 of the Handouts packet. How many of these processes have a positive value for ΔS_{surr} ?

a. 1 b. 2 c. 3 d. 4 e. 5 f. 6 (all)

Consider the six processes described on p. 19 of the Handouts packet. How many of these processes have a positive value for ΔS_{surr} ?

a. 1 b. 2 c. 3 d. 4 e. 5 f. 6 (all)

Only processes 3, 4 and 6 are exothermic, so only these three processes have positive ΔS_{surr} values.

Consider the six processes described on p. 19 of the Handouts packet. How many of these processes <u>must</u> have a positive value for ΔS_{univ} (are always spontaneous)?

a. 1 b. 2 c. 3 d. 4 e. 5 f. 6 (all)

Consider the six processes described on p. 19 of the Handouts packet. How many of these processes <u>must</u> have a positive value for ΔS_{univ} (are always spontaneous)?

a. 1 b. 2 c. 3 d. 4 e. 5 f. 6 (all)

 $\Delta S_{univ} = \Delta S_{sys} + \Delta S_{surr}$; only process 3 always has a positive value for ΔS_{univ} since ΔS_{sys} and ΔS_{surr} are both positive, so only this process will always be spontaneous.