Multiple Choice	Questions	
GRADING:	MC	_ (60)
	21	(6)
	22	(6)
	23	(7)
	24	(7)
	25	(9)
	26	(5)
	27	(13)
	28	(7)

Name _____

Net ID _____

CHEMISTRY 104

Hour Exam I

Summer 2023

For best results please don't leave blanks on the objective or written-out problems. Please show all steps or logic on the written problems so partial credit can be awarded.

MULTIPLE CHOICE - three (3) points each.

- 1. Consider a 0.10 M aqueous solution of sulfurous acid, H_2SO_3 where $K_{a_1} = 1.5 \times 10^{-2}$ and $K_{a_2} = 1.0 \times 10^{-7}$. Which of the following statements is **false**?
 - a) A 0.10 M H₂SO₃ solution would have a lower pH than a 0.10 M H₂SO₄ solution.
 - b) Sulfurous acid is a diprotic acid.
 - c) A combination of NaHSO₃ and Na₂SO₃ could be used to form a pH = 7.0 buffer solution.
 - d) The second dissociation can be ignored when calculating the pH of this solution.
 - e) SO_3^{2-} is a stronger base than HSO_3^{-} .
- 2. Which of the following only contain compounds which would produce **basic** solutions when 0.10 mol of compound were dissolved in 100.0 mL of solution?
 - a) NH₃, NaOH, NH₄NO₃
- b) NaF, KOH, KClO₄
- c) NaCl, KCl, LiNO₃

- d) NH₄NO₃, NH₄Cl, SO₃
- e) NH₃, KCN, CaO
- 3. Consider a 0.10 *M* solution of a monoprotic acid, HA, in which the acid is 10.0% dissociated. How many of the following four statements (I-IV) is/are **true**?
 - I. At equilibrium, $[A^-] = 0.10 M$.
 - II. At equilibrium, pH > 1.00.
 - III. At equilibrium, $[A^-] = [H^+]$.
 - IV. At equilibrium, $[HA] > [A^-]$.
 - a) 0 (none)
- b) 1
- c) 2
- d) 3
- e) 4 (All are true.)
- 4. Consider the reaction: $NH_4NO_3(s) \Rightarrow N_2O(g) + 2 H_2O(g)$ $K_p = 4.85$

200. g of $NH_4NO_3(s)$ are placed in a reaction vessel containing $H_2O(g)$ at a partial pressure of 2.0 atm and $N_2O(g)$ at a partial pressure of 2.0 atm. After equilibrium is reached, will the mass of $NH_4NO_3(s)$ increase, decrease, or remain unchanged?

- a) The mass of $NH_4NO_3(s)$ will decrease (< 200. g).
- b) The mass of $NH_4NO_3(s)$ will increase (> 200. g).
- c) The mass of $NH_4NO_3(s)$ will remain unchanged (= 200. g).

5. Consider the following endothermic reaction at equilibrium:

$$SiHCl_3(g) + 3 H_2O(g) \rightleftharpoons SiH(OH)_3(s) + 3 HCl(g) \Delta H = +450 kJ$$

Which of the following would cause the reaction to shift toward reactants (shift left) to reestablish equilibrium?

- a) Adding $H_2O(g)$.
- b) Increasing the temperature.
- c) Adding Ar(g).
- d) Increasing the volume of the reaction container.
- e) Adding SiH(OH)₃(s).

Consider the titration of 50.0 mL of 0.20 M hydrazine, H₂NNH₂, by 0.20 M HNO₃ for the next two questions. The K_b value for H_2NNH_2 is 3.0×10^{-6} .

- 6. At what volume of HNO₃ added does the pH of the resulting solution equal 8.48 (pH = 8.48)?
 - a) 0.0 mL
- b) 20.0 mL
- c) 25.0 mL
- d) 40.0 mL
- e) 80.0 mL
- 7. At what volume of HNO₃ added does the pH of the resulting solution equal about 7.9 $(pH \approx 7.9)$? Hint: No detailed calculation is necessary to answer this question.
 - a) 0.0 mL
- b) 20.0 mL
- c) 25.0 mL
- d) 40.0 mL
- e) 80.0 mL
- Which of the following statements is **true** concerning a C₂H₅NH₂ / C₂H₅NH₃⁺ buffer 8. solution. K_b for $C_2H_5NH_2 = 5.6 \times 10^{-4}$.
 - a) If initially in the buffer, $[C_2H_5NH_2] = [C_2H_5NH_3^+]$, then pH = 3.25.
 - b) If initially in the buffer, $[C_2H_5NH_2] > [C_2H_5NH_3^+]$, then pH > 10.75.
 - c) If initially in the buffer, $[C_2H_5NH_3^+] = 2[C_2H_5NH_2]$, then pH = 11.82.
 - d) If initially in the buffer, $[C_2H_5NH_2] = 6 [C_2H_5NH_3^+]$, then pH = 6.72.
 - e) Added NaOH to the buffer solution will cause the C₂H₅NH₃⁺ concentration to increase.
- Calculate the [H⁺] in a 0.20 M C₅H₅N solution (K_b for C₅H₅N = 1.7 × 10⁻⁹). 9.

 - a) $2.9 \times 10^{-5} M$ b) $5.4 \times 10^{-10} M$ c) $1.8 \times 10^{-5} M$ d) $3.4 \times 10^{-10} M$

10. Consider a buffer solution consisting of 0.050 M HF and an unknown concentration of NaF. What concentration of NaF is necessary to form a pH = 3.00 buffer solution? K_a for HF = 7.2×10^{-4}

- a) 0.036 M
- b) 0.069 M
- c) 0.050 M
- d) 0.72 M
- e) 0.018 *M*

11. Which of the following statements is **false**?

- a) The conjugate acid of C_5H_5N is $C_5H_5NH^+$.
- b) At 25°C, a solution of an acid in water cannot have a pH greater than 7.0.
- c) At 25°C, a solution of a base in water cannot have a pOH greater than 7.0.
- d) Because HSO₄⁻ is the conjugate base of a strong acid, the K_b value for HSO₄⁻ should be between 1 and 1×10^{-14} .
- e) In general, the stronger the acid, the weaker the conjugate base.
- 12. The following acids are listed in order of **decreasing** acid strength in water:

$$HI > HNO_2 > HOCl > HCN$$

Which of the following statements is **false** concerning these acids?

- a) HI is assumed to be 100% dissociated in water.
- b) The K_a value for HNO₂ is larger than the K_a value for HCN.
- c) The K_b value for NO_2^- is larger than the K_b value for I^- .
- d) The $[H^+]$ in a 1.0 M HOCl solution would be larger than the $[H^+]$ in a 1.0 M HCN solution.
- e) The pH of a 0.10 M HCN solution would be lower than the pH of a 0.10 M HNO₂ solution.
- 13. If a 2.0 M solution of a monoprotic acid is 5.0% dissociated, calculate the K_a value for the acid.
 - a) 1.0×10^{-2}
- b) 2.0×10^{-2} c) 5.0×10^{-2}

- d) 1.0×10^{-3}
- e) 5.3×10^{-3}
- 14. Equal volumes of 0.10 M HCl and 0.10 M Ca(OH)₂ are added together. The pH of the resulting solution is:
 - a) acidic (pH < 7.0).
- b) basic (pH > 7.0). c) neutral (pH = 7.0).

For the process of melting of an ice cube at -10° C, what are the signs for ΔS_{surr} , ΔS , and 15. ΔS_{univ} ?

	ΔS_{surr}	ΔS	ΔS_{univ}
a)	+	_	_
b)	+	+	0
c)		+	_
d)	+	_	+
e)		+	+

16. Consider the following reaction:

$$2 \text{ NO}_2(g) \rightarrow 2 \text{ NO}(g) + O_2(g)$$
 $\Delta G^{\circ}_{298 \text{ K}} = 69.7 \text{ kJ}$

If the temperature is raised to 400. K, what will happen to the value of K?

- a) K will increase as the temperature is increased to 400. K.
- b) K will decrease as the temperature is increased to 400. K.
- c) K will remain unchanged as the temperature is increased to 400. K.
- 17. For which of the following five processes is there a decrease in the entropy of the system $(\Delta S < 0)$?
 - a) $2 \text{ MgO}(s) \rightarrow 2 \text{ Mg}(s) + O_2(g)$
 - b) $2 H_2O(g) \rightarrow 2 H_2(g) + O_2(g)$
 - c) $I_2(1) \rightarrow I_2(s)$
 - d) $NaBr(s) \rightarrow Na^{+}(aq) + Br^{-}(aq)$
 - e) $H_2(g) \rightarrow 2 H(g)$
- 18. Consider the following reaction at 800. K:

$$N_2(g) + 3 F_2(g) \rightarrow 2 NF_3(g) \qquad \Delta G^{\circ}_{800 K} = ?$$

An equilibrium mixture at 800. K contains the following partial pressures: $P_{N_1} = 0.021$ atm, $P_{F_3} = 0.063$ atm, $P_{NF_3} = 0.48$ atm. Calculate ΔG° for the reaction at 800. K.

- a) -39 kJ
- b) 71 kJ

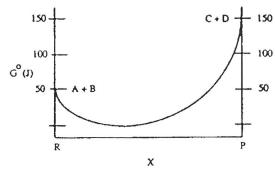
- c) -71 kJ d) 26.5 kJ e) -26.5 kJ

19. Which expression correctly gives the value for the standard enthalpy of formation for liquid carbon disulfide (CS₂) using the following data:

$$C(graphite) + O_2(g) \rightarrow CO_2(g)$$
 $\Delta H_{rxn}^{\circ} = -393 \text{ kJ}$

$$S(s) + O_2(g) \rightarrow SO_2(g)$$
 $\Delta H_{rxn}^{\circ} = -296 \text{ kJ}$

$$CS_2(1) + 3 O_2(g) \rightarrow CO_2(g) + 2 SO_2(g)$$
 $\Delta H_{rxn}^{\circ} = -1072 \text{ kJ}$


$$\Delta H_{f, CS_2}^o = ?$$

a)
$$[-1072 + 393 + 296]$$
 kJ

c)
$$[2(1072) - 393 - 296] \text{ kJ}$$

d)
$$[-1072 + 393 + 2(296)]$$
 kJ

20. Consider the following plot of total free energy vs. X (fraction of A and B reacted) for the reaction of $A + B \rightarrow C + D$.

Note: Assume $G^{\circ}(\text{products}) = 150 \text{ J}$ and $G^{\circ}(\text{reactants}) = 50 \text{ J}$.

Which of the following statements (a-c) is/are true?

- a) The reverse reaction is spontaneous at standard conditions.
- b) K is greater than 1 for this reaction at 298 K.
- c) All reactions want to maximize free energy, so a mixture of only A and B will react completely to form a mixture of only C and D.
- d) All of the above statements (a-c) are true.
- e) None of the above statements (a-c) are true.

USEFUL CONSTANTS AND RELATIONS:

$$N = 6.022 \times 10^{23}$$
; $PV = nRT$

$$R = 8.3145 \text{ J/mol} \cdot \text{K} = 0.08206 \frac{\text{L} \cdot \text{atm}}{\text{mol} \cdot \text{K}}$$

$$\Delta G = \Delta G^{\circ} + RT \ln Q; \quad \Delta G = w_{\text{max}}$$

$$K = {}^{\circ}C + 273$$

$$F = 96,485 \text{ Coul/mol e}^-$$

$$Volt = J/Coul$$

$$E = E^{\circ} - \frac{RT}{nF} \ln Q$$

$$E = E^{\circ} - \frac{0.0591}{n} \log Q$$
 (at 25°C)

$$\Delta G_{\,\,rxn}^{\,\,o} \,\,=\, \Sigma \Delta G_{\,\,f,\,\,products}^{\,\,o} \,\,-\,\, \Sigma \Delta G_{\,\,f,\,\,reactants}^{\,\,o}$$

$$\Delta S_{univ} = \frac{-\Delta G}{T}$$

$$\Delta S_{surr} = \frac{-\Delta H}{T}$$

$$\Delta G = -nFE$$

$$\Delta G^{\circ} = -nFE^{\circ}$$

$$\Delta G^{\circ} = -RT \ln K$$

$$\Delta G = \Delta H - T\Delta S$$

$$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$$

$$E^{\circ} = \frac{0.0591}{n} \log K \text{ (at 25°C)}$$

Amp = Coul/sec

$$k = A e^{-E_a/RT}$$

% dissociation =
$$\frac{\text{amount dissociated}}{\text{initial concentration}} \times 100$$

$$K_w = K_{a \bullet} K_b = [H^+][OH^-]$$

$$K_w = 1.0 \times 10^{-14}$$
 (at 25°C)

$$pH + pOH = 14.00$$

$$pK_a + pK_b = 14.00$$

$$pH = -log[H^+], [H^+] = 10^{-pH}$$

$$pK_a = -log K_a$$

$$pH = pK_a + log \frac{[base]}{[acid]}$$

$$\begin{array}{lll} \underline{Acid} & K_a \\ HF & 7.2 \times 10^{-4} \\ HC_3H_5O_2 & 1.3 \times 10^{-5} \\ HCN & 6.2 \times 10^{-10} \end{array}$$

$$\begin{array}{ll} \underline{Base} & K_b \\ NH_3 & 1.8 \times 10^{-5} \\ H_2NNH_2 & 3.0 \times 10^{-6} \end{array}$$

$$pH = \frac{pK_{a_1} + pK_{a_2}}{2}$$

Zero order reaction:

$$[A] - [A]_0 = -kt$$

$$t_{1/2} = \frac{[A]_0}{2k}$$

First order reaction:

$$ln [A] - ln [A]_0 = -kt \quad or$$

$$\ln\left(\frac{[A]}{[A]_0}\right) = -kt$$

$$t_{1/2} = \frac{0.693}{k}$$

Second order reaction:

$$\frac{1}{[A]} - \frac{1}{[A]_0} = kt$$

$$t_{1/2} = \frac{1}{k[A]_0}$$

PERIODIC TABLE OF THE ELEMENTS

Ne 20.18 Kr 83.80 Xe 131.3 4.003 39.95 A 35.45 Br 79.90 19.00 **7A** Se 78.96 16.00 32.07 Te 127.6 (209)W9 S Sb 121.8 Bi 209.0 P 30.97 N 14.01 As 74.92 **5A** Ge 72.59 Sn 118.7 28.09 12.01 Pb 207.2 A Si 114.8 T1 204.4 Al 26.98 69.72 B 10.81 3A Ga In Zn 65.38 Hg 200.6 Cd 112.4 Ag 107.9 Cu 63.55 Au 197.0 Rg Ni 58.69 Pd 106.4 Pt 195.1 Ds atomic Rh 102.9 Co 58.93 192.2 Mt 58.85 Os 190.2 101.1 Hs Ru Mn 54.94 Fe 55.85 Re 186.2 Tc (98) Bh Mo 95.94 W 183.9 Cr 52.00 Sg V 50.94 Nb 92.91 Ta 180.9 atomic . number Db Ti 47.88 Zr 91.22 178.5 Rf La* 138.9 | 21 | Sc | 44.96 88.91 Ac‡ Y Ca 40.08 Ba 137.3 9.012 Sr 87.62 Mg 24.31 **2A** Ra 226 K 39.10 Cs 132.9 Rb 85.47 Li 6.941 22.99 1.008

0 71	-		102 103		
		-	101		
89	Er	167.3	100	Fm	(257)
29	Но	164.9	66	Es	(252)
99	Dy	162.5	86	Cf	(251)
65	Tb	158.9	26	Bk	(247)
64	PS	157.3	96	Cm	(247)
63	Eu	152.0	95	Am	(243)
62	Sm	150.4	94	Pu	(244)
19	Pm	(145)	93	Np	(237)
09	PN	144.2	92	Ω	238.0
59	Pr	140.9	90 91	Pa	(231)
58	Ce	140.1	06	Th	232.0
lanthanides*	lanthanides*		actinides*		