CHEMISTRY 202	Name	
Practice Hour Exam II		
Fall 2023	Signature	
Dr. D. DeCoste		
	ТΔ	

This exam contains 22 questions on 11 numbered pages. Check now to make sure you have a complete exam. You have two hours to complete the exam. Determine the **best** answer to the first 20 questions and enter these on the special answer sheet. Also, circle your responses in this exam booklet. Show all of your work and/or provide complete answers to questions 21 and 22.

1-20	(60 pts.)	
21	(30 pts.)	
22	(30 pts.)	
Total	(120 pts.)	

Useful Information:

- Always assume ideal behavior for gases (unless explicitly told otherwise).
- 760 torr = 1.00 atm
- R = 0.08206 Latm/molK = 8.314 J/Kmol
- $K = {}^{\circ}C + 273$
- $N_A = 6.022 \text{ x } 10^{23}$

$\Delta E = q + w$	H = E + PV
$\Delta S = q_{ m rev}/T$	G = H - TS

Here are some of the formulas we used/derived in studying thermodynamics. An individual formula may or may not apply to a specific problem. This is for you to decide!

$$\Delta S = nR \ln(V_2/V_1) \qquad \Delta S = \Delta H/T \qquad C_v = (3/2)R \qquad C_p = (5/2)R$$

$$\Delta S = nC \ln(T_2/T_1) \qquad \Delta G = \Delta G^\circ + RT \ln(Q) \qquad \Delta S_{surr} = -q/T$$

$$w = -P\Delta V \qquad q_{rev} = nRT \ln(V_2/V_1) \qquad q = nC\Delta T$$

$$\ln(K) = -\frac{\Delta H^\circ}{R} \left(\frac{1}{T}\right) + \frac{\Delta S^\circ}{R} \qquad \ln\left(\frac{K_2}{K_1}\right) = -\frac{\Delta H^\circ}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right)$$