CHEMISTRY 202
Hour Exam II
October 27, 2022
Dr. D. DeCoste

Name \qquad
Signature \qquad
T.A. \qquad

This exam contains 22 questions on 11 numbered pages. Check now to make sure you have a complete exam. You have two hours to complete the exam. Determine the best answer to the first 20 questions and enter these on the special answer sheet. Also, circle your responses in this exam booklet. Show all of your work and/or provide complete answers to questions 21 and 22.

1-20 (60 pts.) \qquad
21 (30 pts.)
22 (30 pts.)
\qquad
\qquad
Total (120 pts.)

Useful Information:

- Always assume ideal behavior for gases (unless explicitly told otherwise).
- 760 torr $=1.00 \mathrm{~atm}$
- $\mathrm{R}=0.08206 \mathrm{Latm} / \mathrm{molK}=8.314 \mathrm{~J} / \mathrm{Kmol}$
- $\mathrm{K}={ }^{\circ} \mathrm{C}+273$
- $\mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23}$
$\Delta \mathrm{E}=\mathrm{q}+\mathrm{w}$
$\mathrm{H}=\mathrm{E}+\mathrm{PV}$
$\Delta S=\mathrm{q}_{\text {rev }} / \mathrm{T}$
$\mathrm{G}=\mathrm{H}-\mathrm{TS}$

Here are some of the formulas we used/derived in studying thermodynamics. An individual formula may or may not apply to a specific problem. This is for you to decide!

$$
\begin{array}{lll}
\Delta S=\mathrm{nR} \ln \left(\mathrm{~V}_{2} / \mathrm{V}_{1}\right) & \Delta S=\Delta H / \mathrm{T} & \mathrm{C}_{\mathrm{v}}=(3 / 2) \mathrm{R}
\end{array} \mathrm{C}_{\mathrm{p}}=(5 / 2) \mathrm{R}
$$

1. The enthalpy of formation of $\mathrm{AB}_{2}(\mathrm{l})$ from $\mathrm{A}_{2}(\mathrm{~g})$ and $\mathrm{B}_{2}(\mathrm{~g})$ at 298 K is $-301.4 \mathrm{~kJ} / \mathrm{mol}$. Determine ΔE for this process at 298 K in units of $\mathrm{kJ} / \mathrm{mol}$.
a) -294.0
b) -297.7
c) -298.9
d) -303.9
e) -305.1
2. In a coffee-cup calorimeter, a $3.000-\mathrm{g}$ sample of a salt (molar mass $=65.12 \mathrm{~g} / \mathrm{mol}$) is mixed with 100.0 g of water at an initial temperature of $25.0^{\circ} \mathrm{C}$. After the salt dissolves, the temperature of the solution is $27.5^{\circ} \mathrm{C}$. Assume the specific heat capacity of the solution is constant at $4.18 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$ that there is no heat transfer to or out of the calorimeter. Determine the enthalpy change for the dissolving of the salt $\mathrm{kJ} / \mathrm{mol}$.
a) 1.076
b) 22.68
c) -22.68
d) 23.36
e) -23.36
3. Consider 1.00 mole of an ideal monatomic gas in a $25.0-\mathrm{L}$ container at a pressure of 4.50 atm . The gas expands isothermally to a volume of 100.0 L at constant pressure. Determine the ratio of [maximum work peformed:minimum work performed] for this expansion.
a) 1.85
b) 2.43
c) 4.00
d) 5.63
e) 7.32
4. You carry out an acid-base reaction in a Styrofoam cup calorimeter by mixing aqueous solutions of baking soda and vinegar, measuring the temperature (which decreases), and determining ΔH for the reaction in $\mathrm{kJ} / \mathrm{mol}$. Your lab partner carries out the same reaction in a bomb calorimeter, measures the temperature (also decreases), and determines ΔE for the reaction in $\mathrm{kJ} / \mathrm{mol}$. Which of the following best describes the relationship between ΔH and ΔE ? The reaction in question is:

$$
\mathrm{NaHCO}_{3}(a q)+\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(a q) \rightarrow \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(a q)+\mathrm{H}_{2} \mathrm{O}(l)+\mathrm{CO}_{2}(g)
$$

a) The values for ΔH and ΔE are both negative and the magnitude of the value for ΔH is greater than the value for ΔE.
b) The values for ΔH and ΔE are both positive and the magnitude of the value for ΔH is greater than the value for ΔE.
c) The values for ΔH and ΔE are both positive and the magnitude of the value for ΔE is greater than the value for ΔH.
d) The values for ΔH and ΔE are both negative and the magnitude of the value for ΔE is greater than the value for ΔH.
e) The values for ΔH and ΔE are both negative and the magnitudes of the values for ΔH and ΔE do not differ significantly.
5. You have ice in a freezer, take it out, place it on the counter in your kitchen, and forget about it. In which case is the value of $\Delta S_{\text {univ }}$ greatest for the process that occurs?
a) The freezer is set at $-15^{\circ} \mathrm{C}$ and room temperature is $25^{\circ} \mathrm{C}$.
b) The freezer is set at $-15^{\circ} \mathrm{C}$ and room temperature is $0^{\circ} \mathrm{C}$.
c) The freezer is set at $-25^{\circ} \mathrm{C}$ and room temperature is $25^{\circ} \mathrm{C}$.
d) The freezer is set at $-15^{\circ} \mathrm{C}$ and room temperature is $35^{\circ} \mathrm{C}$.
e) At least two of the $\Delta S_{\text {univ }}$ values would be the same.
6. The reaction represented by the chemical equation $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{F}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HF}(\mathrm{g})$ is exothermic. What does this tell us?
a) The bond energy of HF is higher than the average bond energies of H_{2} and F_{2}.
b) The average bond energies of H_{2} and F_{2} are higher than the bond energy of HF.
c) Nothing about average bond energies.
d) All bond energies are endothermic.
e) All bond energies are exothermic.
7. Consider the reaction between $\mathrm{NO}_{2}(g)$ and $\mathrm{O}_{2}(g)$ to produce $\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g})$ at $25.0^{\circ} \mathrm{C}$. Assuming ΔH° and ΔS° values are independent of temperature, determine the temperatures at which this reaction will occur spontaneously at 1 atm . Use the following data:

	$\mathrm{NO}_{2}(\boldsymbol{g})$	$\mathbf{O}_{2}(\boldsymbol{g})$	$\mathbf{N}_{2} \mathrm{O}_{\mathbf{5}}(\boldsymbol{g})$
$\Delta \boldsymbol{H}_{\mathbf{f}}(\mathbf{k J} / \mathbf{m o l})$	33.10		11.30
$\boldsymbol{S}^{\circ}(\mathbf{J} / \mathbf{m o l ~ K})$	240.0	205.2	346.6

a) The process will only occur spontaneously above temperatures of about $-40^{\circ} \mathrm{C}$.
b) The process will only occur spontaneously below temperatures of about $-40^{\circ} \mathrm{C}$.
c) The process will only occur spontaneously above temperatures of about $40^{\circ} \mathrm{C}$.
d) The process will only occur spontaneously below temperatures of about $40^{\circ} \mathrm{C}$.
e) The process is spontaneous at any temperature.
8. In how many of the following cases is the sign of q negative?
I. An isothermal expansion of an ideal gas against a constant external pressure.
II. An isothermal reversible expansion of an ideal gas against a constant external pressure.
III. An isothermal free expansion of an ideal gas.
IV. An isothermal phase change from a liquid to its vapor at its boiling point.
V. An isothermal spontaneous chemical reaction for which $\Delta S<0$.
a) 0
b) 1
c) 2
d) 4
e) 5
9. Using the following data, calculate the standard enthalpy of formation of the compound $\mathrm{XY}(\mathrm{g})$ at $25^{\circ} \mathrm{C}$ in $\mathrm{kJ} / \mathrm{mol}$. The standard states of elements X and Y are $\mathrm{X}_{2}(\mathrm{~g})$ and $\mathrm{Y}_{2}(\mathrm{~g})$, respectively.

$$
\begin{array}{ll}
2 \mathrm{X}(\mathrm{~g}) \rightarrow \mathrm{X}_{2}(\mathrm{~g}) & \Delta H^{\circ}=-370.2 \mathrm{~kJ} \\
2 \mathrm{Y}(\mathrm{~g}) \rightarrow \mathrm{Y}_{2}(\mathrm{~g}) & \Delta H^{\circ}=-114.9 \mathrm{~kJ} \\
\mathrm{X}(\mathrm{~g})+\mathrm{Y}(\mathrm{~g}) \rightarrow \mathrm{XY}(\mathrm{~g}) & \Delta H^{\circ}=-144.7 \mathrm{~kJ}
\end{array}
$$

a) 48.93
b) 97.85
c) 170.2
d) 195.7
e) 340.4
10. Chloroform $\left(\mathrm{CHCl}_{3}\right)$ is a liquid at room temperature and has a boiling point of $61.7^{\circ} \mathrm{C}$. The value of $\Delta H_{\text {vaporization }}$ for chloroform at its boiling point is $31.4 \mathrm{~kJ} / \mathrm{mol}$. Determine the value of $\Delta S_{\text {univ }}+\Delta S_{\text {surr }}+\Delta S$ for the vaporization of 1.00 mol of chloroform at $61.7^{\circ} \mathrm{C}$.
a) $0 \mathrm{~J} / \mathrm{K}$
b) $93.8 \mathrm{~J} / \mathrm{K}$
c) $-93.8 \mathrm{~J} / \mathrm{K}$
d) $188 \mathrm{~J} / \mathrm{K}$
e) $-188 \mathrm{~J} / \mathrm{K}$
11. A quantity of 11.50 kJ of heat is transferred to 1.000 mole of an ideal, monatomic gas in a rigid steel container at $25.0^{\circ} \mathrm{C}$. Determine ΔS in J / K.
a) 8.728
b) 11.72
c) 17.58
d) 21.82
e) 29.30
12. Determine the sign (positive, negative, or zero) for the given quantity in each of the processes described below. For how many of them is the sign positive?

- The value of q for an isothermal compression of 1.00 mole of an ideal monatomic gas.
- The value of ΔH for water vaporizing at $95.0^{\circ} \mathrm{C}$ and 1 atm .
- The value of $\Delta S_{\text {univ }}$ for water vaporizing at $95.0^{\circ} \mathrm{C}$ and 1 atm .
- The value of $\Delta S_{\text {univ }}$ for water freezing at $0^{\circ} \mathrm{C}$ and 1 atm .
- The value of ΔG for the spontaneous isothermal compression of 1.00 mole of an ideal monatomic gas.
- The value of ΔS for water freezing at $0^{\circ} \mathrm{C}$ and 1 atm .
a) 0
b) 1
c) 2
d) 3
e) 4

13. A 500.0 g sample of water at $27.0^{\circ} \mathrm{C}$ is mixed with a 500.0 g sample of water at $73.0^{\circ} \mathrm{C}$ in an insulated container and allowed to come to thermal equilibrium. Assume the specific heat capacity of water is constant at $4.18 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$ and that there is no heat transfer to or out of the container. Determine $\Delta S_{\text {univ }}$ in J / K.
a) 0
b) 10.62
c) 21.25
d) 30.14
e) 39.17

14-15. In lecture we looked at problem 122 from Chapter 9 to introduce the concept of entropy. In this problem, you have 2.4 moles of a gas (ideal monatomic) in a $4.0-\mathrm{L}$ bulb at a temperature of $32^{\circ} \mathrm{C}$. This bulb is connected to a $20.0-\mathrm{L}$ sealed, initially evacuated bulb via a closed valve. The valve is opened.
14. Determine the value of $\Delta S_{\text {univ }}$ (in J / K) for the process that occurs.
a) 0
b) 13.38
c) 14.90
d) 32.11
e) 35.75
15. Determine the value of ΔG (in kJ) for the process that occurs.
a) 0
b) -10.90
c) -9.79
d) 9.79
e) 10.90

16-17. Consider a sample of 1.000 mol of an ideal monatomic gas taken from a condition of 3.000 atm and 20.00 L to 5.000 atm and 15.00 L in one step.
16. Determine the value of ΔH (in $\mathrm{kJ} / \mathrm{mol}$) for this process.
a) 0
b) 2.280
c) -2.280
d) 3.799
e) -3.799
17. Determine the value of ΔE (in $\mathrm{kJ} / \mathrm{mol}$) for this process.
a) 0
b) 2.280
c) -2.280
d) 3.799
e) -3.799

18-20. Consider the reaction $2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$ at $25.0^{\circ} \mathrm{C}$ and the following data:

	$\mathbf{S O}_{2}(\mathbf{g})$	$\mathbf{S O}_{3}(\mathbf{g})$
$\Delta G_{\mathbf{f}}^{\mathbf{O}}(\mathbf{k J} / \mathbf{m o l})$	-300.	-371

18. You have a mixture of the three gases $\left(\mathrm{SO}_{2}, \mathrm{O}_{2}\right.$, and $\left.\mathrm{SO}_{3}\right)$ at equilibrium. How will the system respond to an increase in temperature?
a) Equilibrium will shift toward the left (producing more SO_{2} and O_{2}).
b) Equilibrium will shift to the right (producing more SO_{3}).
c) Equilibrium will not shift.
d) Without more information there is no way to know how equilibrium will shift.
19. Suppose you mix SO_{2} and O_{2} gases each at 2.00 atm in a rigid container and allow them to react to equilibrium at $25.0^{\circ} \mathrm{C}$. Determine the equilibrium pressure of SO_{3} gas.
a) $7.17 \times 10^{-13} \mathrm{~atm}$
b) $1.01 \times 10^{-12} \mathrm{~atm}$
c) $2.02 \times 10^{-12} \mathrm{~atm}$
d) 1.00 atm
e) 2.00 atm
20. How does the value of the equilibrium constant at $50.0^{\circ} \mathrm{C}$ compare to the value of the equilibrium constant at $25.0^{\circ} \mathrm{C}$?
a) The equilibrium constant at $50.0^{\circ} \mathrm{C}$ is greater than that at $25.0^{\circ} \mathrm{C}$.
b) The equilibrium constant at $50.0^{\circ} \mathrm{C}$ is less than that at $25.0^{\circ} \mathrm{C}$.
c) The equilibrium constant at $50.0^{\circ} \mathrm{C}$ is the same as that at $25.0^{\circ} \mathrm{C}$.
d) Without more information there is no way to know how the equilibrium constant will change.
21. We discussed in the videos and in lecture about the isothermal compression and expansion of an ideal, monatomic gas. We discussed this by considering the gas in a container fitted with a piston for which a weight added to the top of the piston (causing the compression of the gas) and then the weight was removed (allowing for the expansion):

The overall goal for this question is to show and explain/justify whether or not the compression and/or the expansion are spontaneous processes.

Make sure to discuss how/if the gas sample and the universe have been changed as the gas goes from State A to State C as shown above.

Your answers (for the compression, expansion, and overall) should include:

- Determining and explaining/justifying the signs (positive, negative, or zero) of:
o ΔH
o ΔE
0 q
0 w
o ΔS
o $\Delta S_{\text {surr }}$
o $\Delta S_{\text {univ }}$
o ΔG
- Determining and explaining/justifying the relative magnitudes of q and w.
- Determining and explaining/justifying the relative magnitudes of ΔS and $\Delta S_{\text {surr }}$.

Use $\boldsymbol{P V}$ diagrams like the ones discussed in the videos, textbook, and lectures, and a discussion of $\boldsymbol{w}_{\text {rev }}$ and $\boldsymbol{q}_{\mathrm{rev}}$ to support your answers.

Full credit is reserved for a logical and systematic presentation of ideas. [30 points]

PLEASE INCLUDE YOUR ANSWERS ON THE FOLLOWING PAGES

21. a. Use the space below to discuss the compression of the gas. [11 points]
22. b. Use the space below to discuss the expansion of the gas. [11 points\}
23. c. Use the space below to discuss the overall results of the compression and expansion of the gas. [8 points]
24. The overall goal for this problem is to quantitatively support the fact that the freezing of water is not spontaneous at $5.0^{\circ} \mathrm{C}$ and 1 atm . Suppose you are given the following information:

- ΔH_{f}° for $\mathrm{H}_{2} \mathrm{O}(s)$ and for $\mathrm{H}_{2} \mathrm{O}(I)$.
- Heat capacity for $\mathrm{H}_{2} \mathrm{O}(s)$ and for $\mathrm{H}_{2} \mathrm{O}(l)$.
- The melting point of water

We will make the assumption that the heat capacity values are independent of temperature, but we will not assume that the ΔH_{f}° values are independent of temperature.
a. Before you begin calculating anything, explain the process you will follow. How will you prove spontaneity? Explain/justify what you will need to determine along the way to evaluating spontaneity, how you will get there, and defend your answers.

Full credit is reserved for a logical, systematic description of the process. [10 points]
22. b. Use the numbers given below to show that the freezing of water is not spontaneous at $5.0^{\circ} \mathrm{C}$ and 1 atm . Show all work and explain how your quantitative answer supports non-spontaneity. Use the following page if needed. [20 points]

- ΔH_{f}° for $\mathrm{H}_{2} \mathrm{O}(s)=-290.90 \mathrm{~kJ} / \mathrm{mol}$
- ΔH_{f}° for $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})=-285.83 \mathrm{~kJ} / \mathrm{mol}$
- Heat capacity for $\mathrm{H}_{2} \mathrm{O}(s)=37.5 \mathrm{~J} / \mathrm{Kmol}$
- Heat capacity for $\mathrm{H}_{2} \mathrm{O}(l)=75.3 \mathrm{~J} / \mathrm{Kmol}$
- Melting point of water $=0^{\circ} \mathrm{C}, 1 \mathrm{~atm}$

22. b. Use this page, if needed, for additional work.
