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Controlled release technologies have received considerable attention throughout 
the years for their applicability in fields of such as adhesives, drug delivery, visual 
indicators and pesticide/herbicide distribution. Vesicles are one type of transport vehicle 
that is intrinsically stimuli responsive because of its spontaneous non-covalent assembly. 
To achieve stimuli responsive vesicles, preparing amphiphilic chemical agents that are 
driven to self-assembly and have properties such as cleavable bonds, redox active groups, 
or undergo architectural reorganization thought conformational changes that induces a 
disruption in vesicle formation. Examples of these types of chemical agents are 
supramolecular amphiphiles. Supramolecular amphiphiles are agents that form host-guest 
complexes through non-covalent interactions that lead to an assembly that possess a 
hydrophobic and a hydrophilic domain. These systems are intrinsically stimuli responsive 
due to their non-covalent interactions bonding and therefore are gaining traction for this 
application.1 

A new class of supramolecular macrocycles that are being applied to the 
construction of various assemblies such as, supramolecular polymers, molecular 
machines and artificial transmembrane channels are pillar[n]arenes (P[n]As).2 Introduced 
in 2008 by Ogoshi and co-works, P[n]As are cyclic oligomers of para-linked 
hydroquinones. Their synthesized in a one step Friedel-Crafts type reaction of para-
substituted hydroquinone with paraformaldehyde in the presence of a Lewis base 
resulting in a columnar structure with a ridged hollow electron-rich interior (Figure 1).3 

 

 
Figure 1. Three-dimensional representation of the chemical structure of Pillar[6]arene.  
 

These hollow pillar-like structures yield macrocycles of 5 to 15 hydroquinone 
units in length. P[n]As and have been shown to complex with a variety of cationic 
organic salts such as trimethyl ammoniums, pyridiniums and paraquat.4 Their ability to 
form strong host-guest complexes has prompted the use of P[n]As in the development of 
stimuli responsive vesicles. In 2012, Huang and co-workers were the first to report the 
synthesis of a pillararene system that would form vesicles when an ammonium 
azobenzene derivative formed the proper host-guest interactions. This system was 
demonstrated to undergo hierarchical reorganization when a photo stimulus was applied 
and prompted the development of a variety of stimuli responsive pillararene vesicle 
systems (Figure 2). 5 

OH

HO

HO

OH

HO

OHOH

HO

OH

HO HO

OH



 
Figure 2. Schematic representation of P[n]A photo-responsive vesicles. 

 
Although Huang’s work demonstrated that P[n]A systems could be used to form 

vesicles in a supramolecular fashion, one limitation to the system was the lack of water 
solubility. This led to the use of water-soluble ionically functionalized P[n]As a stradegy 
that was used by other groups to build amphiphilic P[n]A systems.6  

Since Huang’s work, P[n]A systems that are responsive to other stimuli such as 
pH, enzymatic cleavage, and redox conditions have been employed. 7-10The combination 
of water soluble P[n]As combined with the use of biocompatible stimuli allows these 
vesicles to be used in drug delivery application. Using a redox responsive system, P[n]A 
vesicles were shown to encapsulate doxorubicin, penetrate in to cells and affect viability. 

P[n]A host-guest systems have been show to form vesicle-like structures with a 
stimuli responsive behavior. Their facile modification has allowed researchers to apply 
them to a variety of environments with a diversity of stimulus. Moving forward, the 
challenge for P[n]A supramolecular vesicles is to stand out above existing 
supramolecular systems one potential route for this would be the application of these 
systems to a set of unique chemical problems yet to be addressed by supramolecular 
vesicles. 
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