Zinc Polysulfides as Precursors to ZnS and as Group Transfer Reagents
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ZnS is an important material which is widely used in pigments, semiconductors, rubber
compounding and phosphors [1]. We have developed a new entry into zinc sulfide chemistry
that involves the reaction of elemental zinc and sulfur in a donor solvent. This is the “L-M-X”
approach, where L = N-donor, M = metal in zero oxidation state, and X = oxidant, in our case

Sg (eq 1) [2].

A
Zn + 6/8Sg + 2L —— >  ZnS¢L, (D

Using this methodology, we have prepared a wide variety of ZnSg(N-donor), species. These
reactions can be conducted safely on a substantial scale (>50 g). Depending on the identity of
L, these complexes display a range of reactivity, solubility, and stability. Crystallographic
analysis shows that ZnSg(TMEDA) adopts a tetrahedral geometry with a seven-membered
ZnSg ring [3].

Ligand competition studies on solutions of ZnSgL; complexes revealed that their
relative stability (DMAP>Melm>TMEDA>pyridine) parallels the basicity of the ligands. For
example, TMEDA is displaced by the more basic ligands MeIm (pK, = 7.33) and quinuclidine
(PKa = 10.95), but not by pyridine (pK, = 5.23). On the other hand, the very labile pyridine
analog, ZnSepy?, is a useful precursor to adducts of more specialized donors, such as TEEDA
(N,N,N',N’-tetraethylethylenediamine) and (-)-sparteine, which can not be prepared by direct
L/Zn/Sg reactions. Crystallographic analysis of ZnSg{(-)-sparteine} indicates it to be a
mixed-crystal complex best described as [ZnSe{(-)-sparteine }]19.g[ZnSs{(-)-sparteine }]g.2.
Optical and reactivity studies showed that MeIm, but not pyridine, displaces the polysulfide
from ZnSg¢(Melm); as indicated by the apgearance of the chromophore S3°. ZnSg(TMEDA)
engages in conventional reactions with S¢2- (to give ZnS172") and electrophilic acetylenes (to
give the dithiolene complexes).

Solid ZnS¢(TMEDA) cleanly decomposes into ZnS at 350 °C as indicated by TGA
and preparative scale studies. Thus, these polysulfides represent donor-stabilized inter-
mediates in the reaction of sulfur and zinc:

Submicron cubic ZnS is generated upon partial desulfurization of ZnSg(TMEDA) with tertiary
phosphines (eq 2) as established by electron microscopic studies.

ZnS¢(TMEDA) + 5PBuy; ——= ZnS + 5Bu;PS + TMEDA )

The reaction of ZnSg(Melm); with 5 equiv of zinc dust affords nanosize material
ZnS(Melm)j~x (x = 0 - 0.3). Unlike cubic ZnS, this species is very reactive towards MeIm
solutions of sulfur to afford ZnSg(Melm);. This result suggests that the nanosize material is
an intermediate in the formation of ZnSg(Melm); from the reaction of zinc, sulfur, and Melm.
Its formulation is supported by TGA, XPS, CL, and SS MAS 13C NMR spectroscopic mea-
surements. The ZnS(MelIm);.x species also reacts with Cu,S19(Melm)4 [4c] to afford
[Zn(Melm)e][CusS12].

The species ZnSg(TMEDA) is a potent polysulfido-transfer reagent. The reaction of
this zinc reagent with Cp,TiCl, gives Cp,TiSs, which is a widely cited polysulfido-group
transfer reagent itself [5]. Treatment of a CS3 slurry of ZnS¢(TMEDA) with Se;Cl, gives 1,2-
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SezSe, as confirmed by reverse phase HPLC, Raman, and 77Se NMR spectroscopic
measurements (eq 3) [5].

S—orS  SeCl Se Sel >
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The reaction of CH,Cl; solutions of ZnSg(TMEDA) with TiCly affords a brown solid

TiSx (x~10). Unlike other titanium sulfides, this material is soluble in donor solvents. Extra-
ction of TiSx with MeIm affords the molecular complex Ti(S2)2(Melm)s, which can be
considered a Lewis base adduct of Ti(S;),. Crystallographic analysis reveals a pseudo
trigonal-bipyramidal geometry around Ti, with the two of the MeIm ligands occupying axial
sites. Solutions of TiS4(MeIm)3 are extremely sensitive to air. Oxygenation generates the
dinuclear [-oxo species [Tip(S2)2(1-S2)(L-O)(Melm)g], as confirmed by single crystal X-ray
diffraction.
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