Zinc Polysulfides as Precursors to ZnS and as Group Transfer Reagents

Atul K. Verma

Final Seminar

August 30, 1996

ZnS is an important material which is widely used in pigments, semiconductors, rubber compounding and phosphors [1]. We have developed a new entry into zinc sulfide chemistry that involves the reaction of elemental zinc and sulfur in a donor solvent. This is the “L-M-X” approach, where L = N-donor, M = metal in zero oxidation state, and X = oxidant; in our case S₈ (eq :) [2].

\[
\text{Zn} + \frac{6}{8} \text{S}_8 + 2 \text{L} \xrightarrow{\Delta} \text{ZnS}_6\text{L}_2
\]

(1)

Using this methodology, we have prepared a wide variety of ZnS₆(N-donor)₂ species. These reactions can be conducted safely on a substantial scale (>50 g). Depending on the identity of L, these complexes display a range of reactivity, solubility, and stability. Crystallographic analysis shows that ZnS₆(TMEDA) adopts a tetrahedral geometry with a seven-membered ZnS₆ ring [3].

Ligand competition studies on solutions of ZnS₆L₂ complexes revealed that their relative stability (DMAP>MeIm>TMEDA>pyridine) parallels the basicity of the ligands. For example, TMEDA is displaced by the more basic ligands MeIm (pKₐ = 7.33) and quinuclidine (pKₐ = 10.95), but not by pyridine (pKₐ = 5.23). On the other hand, the very labile pyridine analog, ZnS₆Py₂, is a useful precursor to adducts of more specialized donors, such as TEEDA (N,N,N',N' -tetraethylthielenediamine) and (-)sparteine, which can not be prepared by direct L/Zn/S₈ reactions. Crystallographic analysis of ZnS₆{(-)-sparteine} indicates it to be a mixed-crystal complex best described as [ZnS₆{(-)-sparteine}][0.₈[ZnS₅{(-)-sparteine}][0.₂]. Optical and reactivity studies showed that MeIm, but not pyridine, displaces the polysulfide from ZnS₆(MeIm)₂ as indicated by the appearance of the chromophore S₃⁻. ZnS₆(TMEDA) engages in conventional reactions with S₆²⁻ (to give ZnS₁₂²⁻) and electrophilic acetylides (to give the dithiolene complexes).

Solid ZnS₆(TMEDA) cleanly decomposes into ZnS at 350 °C as indicated by TGA and preparative scale studies. Thus, these polysulfides represent donor-stabilized intermediates in the reaction of sulfur and zinc:

Submicron cubic ZnS is generated upon partial desulfurization of ZnS₆(TMEDA) with tertiary phosphines (eq 2) as established by electron microscopic studies.

\[
\text{ZnS}_6(\text{TMEDA}) + 5 \text{PBU}_3 \xrightarrow{} \text{ZnS} + 5 \text{Bu}_3\text{PS} + \text{TMEDA}
\]

(2)

The reaction of ZnS₆(MeIm)₂ with 5 equiv of zinc dust affords nanosize material ZnS(MeIm)₁₋ₓ (x = 0 - 0.3). Unlike cubic ZnS, this species is very reactive towards MeIm solutions of sulfur to afford ZnS₆(MeIm)₂. This result suggests that the nanosize material is an intermediate in the formation of ZnS₆(MeIm)₂ from the reaction of zinc, sulfur, and MeIm. Its formulation is supported by TGA, XPS, CL, and SS MAS ¹³C NMR spectroscopic measurements. The ZnS(MeIm)₁₋ₓ species also reacts with Cu₄S₁₀(MeIm)₄ [4c] to afford [Zn(MeIm)₆][Cu₄S₁₂).

The species ZnS₆(TMEDA) is a potent polysulfido-transfer reagent. The reaction of this zinc reagent with Cp₂TiCl₂ gives Cp₂TiS₅, which is a widely cited polysulfido-group transfer reagent itself [5]. Treatment of a Cs₂ slurry of ZnS₆(TMEDA) with Se₂Cl₂ gives 1,2-
Se$_2$S$_6$, as confirmed by reverse phase HPLC, Raman, and 77Se NMR spectroscopic measurements (eq 3) [5].

\[
\begin{align*}
\text{Me} & \quad \text{Me} \\
\text{N} & \quad \text{Zn} \\
\text{S} & \quad \text{S} \\
\text{S} & \quad \text{S} \\
\text{Me} & \quad \text{Me}
\end{align*}
\xrightarrow{\text{Se}_2\text{Cl}_2, \text{CS}_2, -30^\circ \text{C}}
\begin{align*}
\text{S} & \quad \text{S} \\
\text{S} & \quad \text{S} \\
\text{S} & \quad \text{S} \\
\text{Se}_{\text{Zn}} & \quad \text{Se}_{\text{Zn}} \\
\text{ZnCl}_2(\text{TMEDA})
\end{align*}
\text{ (3)}

The reaction of CH$_2$Cl$_2$ solutions of ZnS$_6$(TMEDA) with TiCl$_4$ affords a brown solid TiS$_x$ (x~10). Unlike other titanium sulfides, this material is soluble in donor solvents. Extraction of TiS$_x$ with Melm affords the molecular complex Ti(S$_2$)$_2$(Melm)$_3$, which can be considered a Lewis base adduct of Ti(S$_2$)$_2$. Crystallographic analysis reveals a pseudo trigonal-bipyramidal geometry around Ti, with the two of the Melm ligands occupying axial sites. Solutions of TiS$_4$(Melm)$_3$ are extremely sensitive to air. Oxygenation generates the dinuclear μ-oxo species [Ti$_2$(S$_2$)$_2$(μ-S$_2$)(μ-O)(Melm)$_4$], as confirmed by single crystal X-ray diffraction.

References

(c) Phoenix, K. A.; Skrable, K. W.; Chabot, G. E.; French, C. S.; Jo, M.; Falo, G. A. Health Phys. 1993, 64, 64.

