Zinc Polysulfides as Precursors to ZnS and as Group Transfer Reagents Atul K. Verma Final Seminar August 30, 1996 ZnS is an important material which is widely used in pigments, semiconductors, rubber compounding and phosphors [1]. We have developed a new entry into zinc sulfide chemistry that involves the reaction of elemental zinc and sulfur in a donor solvent. This is the "L-M-X" approach, where L = N-donor, M = metal in zero oxidation state, and X = oxidant, in our case S_8 (eq 1) [2]. $$Zn + 6/8 S_8 + 2 L \xrightarrow{\Delta} ZnS_6L_2$$ (1) Using this methodology, we have prepared a wide variety of $ZnS_6(N-donor)_2$ species. These reactions can be conducted safely on a substantial scale (>50 g). Depending on the identity of L, these complexes display a range of reactivity, solubility, and stability. Crystallographic analysis shows that $ZnS_6(TMEDA)$ adopts a tetrahedral geometry with a seven-membered ZnS_6 ring [3]. Ligand competition studies on solutions of ZnS_6L_2 complexes revealed that their relative stability (DMAP>MeIm>TMEDA>pyridine) parallels the basicity of the ligands. For example, TMEDA is displaced by the more basic ligands MeIm ($pK_a = 7.33$) and quinuclidine ($pK_a = 10.95$), but not by pyridine ($pK_a = 5.23$). On the other hand, the very labile pyridine analog, ZnS_6py_2 , is a useful precursor to adducts of more specialized donors, such as TEEDA (N,N,N',N'-tetraethylethylenediamine) and (-)-sparteine, which can not be prepared by direct $L/Zn/S_8$ reactions. Crystallographic analysis of $ZnS_6\{(-)$ -sparteine $\}$ indicates it to be a mixed-crystal complex best described as $[ZnS_6\{(-)$ -sparteine $\}]_{0.8}[ZnS_5\{(-)$ -sparteine $\}]_{0.2}$. Optical and reactivity studies showed that MeIm, but not pyridine, displaces the polysulfide from $ZnS_6(MeIm)_2$ as indicated by the appearance of the chromophore S_3^- . $ZnS_6(TMEDA)$ engages in conventional reactions with S_6^{2-} (to give ZnS_{12}^{2-}) and electrophilic acetylenes (to give the dithiolene complexes). Solid ZnS₆(TMEDA) cleanly decomposes into ZnS at 350 °C as indicated by TGA and preparative scale studies. Thus, these polysulfides represent donor-stabilized intermediates in the reaction of sulfur and zinc: Submicron cubic ZnS is generated upon partial desulfurization of ZnS₆(TMEDA) with tertiary phosphines (eq 2) as established by electron microscopic studies. $$ZnS_6(TMEDA) + 5 PBu_3$$ \longrightarrow $ZnS + 5 Bu_3PS + TMEDA$ (2) The reaction of $ZnS_6(MeIm)_2$ with 5 equiv of zinc dust affords nanosize material $ZnS(MeIm)_{1\sim x}$ ($x\approx 0$ - 0.3). Unlike cubic ZnS, this species is very reactive towards MeIm solutions of sulfur to afford $ZnS_6(MeIm)_2$. This result suggests that the nanosize material is an intermediate in the formation of $ZnS_6(MeIm)_2$ from the reaction of zinc, sulfur, and MeIm. Its formulation is supported by TGA, XPS, CL, and SS MAS ^{13}C NMR spectroscopic measurements. The $ZnS(MeIm)_{1\sim x}$ species also reacts with $Cu_4S_{10}(MeIm)_4$ [4c] to afford $[Zn(MeIm)_6][Cu_4S_{12}]$. The species $ZnS_6(TMEDA)$ is a potent polysulfido-transfer reagent. The reaction of this zinc reagent with Cp_2TiCl_2 gives Cp_2TiS_5 , which is a widely cited polysulfido-group transfer reagent itself [5]. Treatment of a CS_2 slurry of $ZnS_6(TMEDA)$ with Se_2Cl_2 gives 1,2- Se_2S_6 , as confirmed by reverse phase HPLC, Raman, and ^{77}Se NMR spectroscopic measurements (eq 3) [5]. Me Me $$\sum_{N=1}^{N} \sum_{S=1}^{N} \sum_{S=1}^{N} \frac{Se_2Cl_2}{CS_2, -30 \, ^{\circ}C}$$ $$\sum_{N=1}^{N} \sum_{S=1}^{N} \sum$$ The reaction of CH_2Cl_2 solutions of $ZnS_6(TMEDA)$ with $TiCl_4$ affords a brown solid TiS_x (x~10). Unlike other titanium sulfides, this material is soluble in donor solvents. Extraction of TiS_x with MeIm affords the molecular complex $Ti(S_2)_2(MeIm)_3$, which can be considered a Lewis base adduct of $Ti(S_2)_2$. Crystallographic analysis reveals a pseudo trigonal-bipyramidal geometry around Ti, with the two of the MeIm ligands occupying axial sites. Solutions of $TiS_4(MeIm)_3$ are extremely sensitive to air. Oxygenation generates the dinuclear μ -oxo species $[Ti_2(S_2)_2(\mu-S_2)(\mu-O)(MeIm)_4]$, as confirmed by single crystal X-ray diffraction. ## References - 1. (a) Aylett, B. J. in *Comprehensive Coordination Chemistry*, Wilkinson, G.; McCleverty, J.; Gillard, R. D., Eds.; Pergamon: Oxford, 1984. - (b) Eggins, B. R.; Robertson, P. K. J.; Stewart, J. H.; Woods, E. J. Chem. Soc., Chem. Commun. 1993, 349. - (c) Phoenix, K. A.; Skrable, K. W.; Chabot, G. E.; French, C. S.; Jo, M.; Falo, G. A. *Health Phys.* **1993**, *64*, 64. - (d) Mullin, J. B.; Irvine, S. J. C. *Prog. Cryst. Growth Charact.* **1994**, 29, 217. - (e) Yao, G. Q.; Shen, H. S.; Honig, E. D.; Kershaw, R.; Dwight, K.; Wold, A. *Solid State Ionics* **1987**, 24, 249. - 2. (a) Paul, P. P.; Rauchfuss, T. B.; Wilson, S. R. J. Am. Chem. Soc. 1993, 115, 3316. - (b) Dev, S.; Ramli, E.; Rauchfuss, T. B.; Wilson, S. R. *Inorg. Chem.* **1991**, *30*, 2514. - (c) Ramli, E., Rauchfuss, T. B.; Stern, C. L. J. Am. Chem. Soc. 1990, 112, 4043. - (d) Dev, S.; Rauchfuss, T. B.; Stern, C. L. J. Am. Chem. Soc. 1990, 112, 6385. - 3. Verma, A. K.; Rauchfuss, T. B.; Wilson, S. R. *Inorg. Chem.* **1995**, *34*, 3072. - 4. Steudel, R. in *Chemistry of Inorganic Ring Systems*, Steudel, R., Ed.; Studies in Inorganic Chemistry, Vol. 14; Elsevier Science: New York, 1992, p. 233. - 5. Verma, A. K.; Rauchfuss, T. B. *Inorg. Chem.* **1995**, *34*, 6199.