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Transition metal carbonyl clusters (TMCCs) have been widely 
studied as soluble models for metal surfaces in heterogeneous 
catalysts and as homogeneous catalysts or catalyst precursors them
selves [l]. Their rational use in the latter capacity is hampered 
by their inevitable fragmentation under the conditions of catalysis. 
Main group elements (MG} have been incorporated into the cluster 
core to tether the metal atoms together [2], since TM-MG bonds are 
generally stronger than TM-TM bonds [3]. sulfur is one of the more 
commonly used main group elements for this purpose. 

Central to control of metal vertex lability in transition metal 
main group element carbonyl clusters (TMMGCCs} is an understanding 
of the reaction pathways available to the clusters. Unfortunately, 
there have been very few such investigations f 4]. The study of 
TMTeCCs is useful to such an understandinq for three reasons. First, 
the chemistry of TMTeCCs complements that of the analogous sulfides; 
the heavier atom generally stabilizes intermediates which are not ob
servable in TMSCC chemistry. Second, the compounds Fe3Te2(C0}9 and 
Co4Te2(CO) io are anomalous in forming adducts with Lewis bases, a 
reaction the sulfide and selenide analogues do not undergo [4]. 
Third, 125Te NMR spectroscopy is a useful probe of the cluster core 
structure, and as such it complements other methods which probe the 
ligands on the metal vertexes [5]. 

The reaction of Fe3Te 2 (C0) 9 with metal carbonyl dimers at 150-
1800 and under 1300-1750 psi of CO was found to be a convenient route 
to a variety of TMTeCCs. Comparison of the chemistry of similar 
Fe-Co-E and Fe-Mo-E (E = s, Te} systems led to the proposal that these 
reactions proceed by the pathway shown in the scheme below. The 
novel part of this mechanism is the rearrangement of a (TM)~E 2 cluster 
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by dissociation and recapture of a TM vertex. In the system Fe 2 (S2) 
(CO} G + Cp 2Mo 2 (C0) 4 dissociated Fe(CO}x (x<5) fragments were trapped 
as Fe3S 2 (C0)9. The formation of two isomers of CpzM02Fe2S2(CO}s [6] is 
explained by this mechanism and a method was devised for isomerization 
of the cis- isomer to the trans- Cp2Mo2Fe2S 2 (CO) a. 
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Heating Cp 2Mo 2FeTe2(CO) 7 at 110° generated a reactive inter-
mediate which was trapped with Fe(C0} 5 , CpCo(CO) 2, and with RCCH 
(R = Ph, H) . The product of the latter reaction has the formula 
Cp 2Mo2FeTe2(CO) 3 (RCCH) / and its structure was established by a 
combination of 1 H and 1 H coupled 1 3 C NMR spectroscopy of three dif
ferent derivatives. 
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Careful inspection of the crystal structure of Cp£Mo2FeTe 2 (CO} 7 [7] 
revealed a s hort (3.14 ~) Te···Te contact. Subsequent inspection of 
the structures of the Lewis base adducts of Fe 3Tez(C0) 9 and Co 4 Te 2 (CO} 10 
revealed similar short Te···Te distances in those compounds. It is 
proposed that the anomalous Lewis acidity of Fe 3 Te 2 (C0) 9 and Co 4 Te 2-
(C0)10 is due to the stabilizing effect of those Te•••Te interactions. 

The two electron reduction of Fe 3Te 2 (C0) 9 was found to be re
versible, but attempts to isolate the stable dianion and compare its 
structure with that of the isoelectronic adduct Fe 3Te 2 (C0} 9 (PPh 3 ) 

failed. Oxidation of Cp~Mo 2FeTe 2 (CO) 7 (which is isoelectronic with 
Fe 3Te2 (CO) 9L and has a similar structure) with Br2/CO gave a good yield 
of CpM0Fe(Te 2Br) (CO) s, which features a novel Te2Br ligand. In solu
tion the compound undergoes rapid exchange of Br making the Te atoms 
equivalent, but at -88° in toluene this exchang e is slowed enough that 
1H NMR indicates a chiral compound. 

Reaction of A~SbF 6 with CpMoFe(Te 2 B~) (CO) s generates the cation 
[CpM0Fe(Te2} (CO) s ] • This compound reacts with a variety of nucleo
philes to give products resulting from initial attack at Te. This 
behavior is novel in that the main group element is more reactive than 
the transition metals. 
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