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The Fe-only hydrogenases catalyze the interconversion between protons and dihydrogen.  
The H2-binding center (H-cluster) in the Fe-only hydrogenases1-5 adopts a face-shared bi-
octahedral structure (Figure 1).  The entire complement of ancillary ligands are unusual in the 
biological context.6  Cyanide and CO are rarely observed in Nature, although they are also found 
in the NiFe hydrogenases.7  Other unusual features include the dithiolate cofactor, the sulfur 
atoms of which bridge the iron atoms,5, 8 and an Fe4S4(SCys)4 cluster that is linked to the active 
site via a cysteinyl thiolate bridge.  The oxidized, active form (Hox, see below) of the binuclear 
active site can be described as [Fe2[(SCH2)2X](CN)2(µ-CO)(CO)2(SR2)(L)]z, where SR2 
represents the thiolato-bridged Fe4S4 ligand, X is speculated to be NH, and L is the Hx-binding 
site (x = 1, 2) that can also be occupied by CO (Hox

CO) or possibly H2O.1, 9 
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Figure 1.  Hydrogenase active site, Hred(left) and [HFe2(S2C3H6)(CN)2(CO)4]- (right). 
 
 
Oxidations of sub-ferrous compounds afford a new family of diferrous dithiolates.  Low 

temperature oxidation of Fe2(S2CnH2n)(CNMe)6-x(CO)x (n = 2, 3; x = 2, 3) affords a family of 
mixed carbonyl-isocyanides of the type [Fe2(S2CnH2n)(CO)x(CNMe)7-x]2+.10  The degree of 
substitution is controlled by the RNC/Fe ratio as well as the degree of initial substitution at iron, 
with tricarbonyl derivatives favoring more highly carbonylated products.  The structures of the 
monocarbonyl derivatives [Fe2(S2CnH2n)(µ-CO)(CNMe)6](PF6)2 (n = 2, 3) established 
crystallographically and spectroscopically, are quite similar, with Fe---Fe distances of ca. 2.5 Å, 
although the µ-CO is unsymmetrical in the propanedithiolate derivative. In the dicarbonyl 
species, [Fe2(S2C2H4)(µ-CO)(CO)(CNMe)5](PF6)2, the terminal CO ligand is situated at one of 
the basal sites, not trans to the Fe---Fe vector.   

 
Oxidation of (Et4N)2[Fe2(S2C2H4)(CN)2(CO)4] in the presence of cyanide and tertiary 

phosphines and of Fe2(S2C2H4)(PMe3)2(CO)4 in the presence of cyanide affords a series of 
diferrous cyanide derivatives (Scheme 1)11 that bear a stoichiometric, structural, and electronic 
relationship to the Hox

air state of the Fe-only hydrogenases.  With PPh3 as the trapping ligand, we 
obtained an unsymmetrical isomer of Fe2(S2C2H4)(µ-CO)(CN)2(PPh3)2(CO)2, which was 
confirmed crystallographically. This diferrous cyanide features the semibridging CO ligand with 



Fe-µC bond lengths of 2.15 and 1.85 Å.  Four isomers of Fe2(S2C2H4)(µ-CO)(CN)2(PMe3)2(CO)2 
were observed, the initial product again being unsymmetrical but more stable isomers are 
symmetrical.  DFT calculations confirm that the most stable isomers of Fe2(S2C2H4)(µ-
CO)(CN)2(PMe3)2(CO)2 have cyanide trans to µ-CO.  Oxidative decarbonylation also afforded 
the new tetracyanide [Fe2(S2C2H4)(µ-CO)(CN)4(CO)2]-.  Insights into the oxidative 
decarbonylation mechanism of these syntheses comes from the spectroscopic characterization of 
the tetracarbonyl [Fe2(S2C2H4)(µ-CO)(CN)3(CO)3]-.  This species reacts with PEt3 to produce the 
stable adduct [Fe2(S2C2H4)(µ-CO)(CN)3(CO)2(PEt3)]-. 
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Scheme 1.  Oxidative decarbonylation methodology for (Et4N)2[Fe2(S2C2H4)(CN)2(CO)4]. 
 
 

The protonation of (Et4N)2[Fe2(S2C3H6)(CN)2(CO)4] has been further characterized.  Low 
temperature IR spectroscopic studies show that the protonation of 
(Et4N)2[Fe2(S2C3H6)(CN)2(CO)4] with HOTs gave Et4N[Fe2(S2C3H6)(CN)(CNH)(CO)4].  The 
species, Et4N[Fe2(S2C3H6)(CN)(CNH)(CO)4], undergoes an approximate first-order decay to the 
hydride Et4N[HFe2(S2C3H6)(CN)2(CO)4] (Figure 1).  Addition of a second equiv of H+ to 
Et4N[HFe2(S2C3H6)(CN)2(CO)4] resulted in protonation at the CN- ligand to give 
[HFe2(S2C3H6)(CN)(CNH)(CO)4].  [HFe2(S2C3H6)(CN)(CNH)(CO)4] was shown to catalyze the 
reduction of protons at -1.5 V vs Ag/AgCl.  Decarbonylation of Et4N[HFe2(S2C3H6)(CN)2(CO)4] 
in the presence of PPh3 resulted in Et4N[HFe2(S2C3H6)(CN)2(CO)3(PPh3)] followed by 
Et4N[HFe2(S2C3H6)(CN)2(CO)2(PPh3)2], which exist as multiple isomers.  MeCN solutions of 
Et4N[HFe2(S2C3H6)(CN)2(CO)4] in the absence of PPh3 gave the solvolysis product, 
Et4N[HFe2(S2C3H6)(CN)2(MeCN)(CO)3] which reacts with PMe3 and CN- to produce 
Et4N[HFe2(S2C3H6)(CN)2(PMe3)(CO)3] and (Et4N)2[HFe2(S2C3H6)(CN)3(CO)3], respectively.  
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