Structure and Function of the A-Cluster of Carbon Monoxide Dehydrogenase

James Carey

Literature Seminar

December 3,1998

Carbon monoxide dehydrogenase (CODH) is an oxygen-sensitive nickel-containing enzyme that is known to catalyze two important reactions via the formation of proposed nickel-carbon bonds. This "bioorganometallic" enzyme catalyzes the oxidation of CO to CO_2 and the synthesis of acetyl Coenzyme-A from CO, Coenzyme-A, and a methyl group donated from a corrinoid iron-sulfur protein as shown in equations 1 and 2.^{1-3,14} Coenyme-A is Nature's

$$CO + H_2O \xrightarrow{CODH} CO_2 + 2H^+ + 2e^-$$
(1)

$$CH_3$$
-[CoFeS] + HS-CoenyzmeA + CO \xrightarrow{CODH} CH_3 \xrightarrow{CODH} CH_3 $\xrightarrow{S-CoenyzmeA}$ + H⁺ + [CoFeS]⁻ (2)

carrier of acetyl and other acyl groups. CODH is a relatively large protein (310 kDa) that is a $\alpha_2\beta_2$ tetramer containing approximately 2 Ni and 12 Fe per $\alpha\beta$ dimer.³ CODH, which is isolated from the bacteria *Clostridium thermoaceticum*, contains both active and inactive Ni.^{7,11,15}

Carbon monoxide dehydrogenase contains three different transition metal clusters: A, B, and C, as shown in Figure 1.⁴ One of the most interesting and puzzling aspects of this

Figure 1

enzyme is that although the A and C-clusters are believed to have the same structure, they catalyze two different reactions. The C-cluster catalyzes the oxidation of CO, while the A-Cluster catalyzes acetyl coenzyme-A synthesis.^{6,7} The B-cluster is a $[Fe_4S_4]^{2+/1+}$ cluster, whose function is to transfer electrons between the C-cluster and external redox agents.⁵ Recently synthesized model complexes demonstrate that a single Ni compound can catalyze similar reactions shown in equations 1 and 2, mimicking the enzyme activity.⁷

The majority of published work focuses on the catalytic chemistry of the A-cluster. Both EPR and Mössbauer data suggest that the resting state is a pentacoordinate nickel bridged to a diamagnetic $[Fe_4S_4]$ cluster by an unknown ligand $iX\hat{1}$.^{1-3,8,9,10,11,12} The first step in the enzymatic process is the addition of a methyl group from a B₁₂-like enzyme.^{13,14} Isotropic Labeling and metal removal studies provide evidence for this unique alkylation reaction.^{10,14} This step is followed by the addition of CO and its subsequent migratory insertion into the Ni-CH₃ bond, as indicated by stereochemical studies¹³. The final step is the formation of acetyl Coenzyme-A. Although more convincing evidence needs to be found before the presence of these complexes are widely accepted, the intermediates proposed here are consistent with all of the latest experimental evidence.

References

- (a) Spiro, T.G., Iron-Sulfur Proteins; John Wiley & Sons: New York, 1982. (b) The Bioinorganic Chemistry of Nickel; Lancaster, J. R., Ed., VCH Publishers: New York, 1988. (c) Bioinorganic Catalysis; Reedijk, J., Ed., Marcel Dekker: New York, 1993.
- (a) Drake, D. L.; Hu, S.; Wood, H. G., "Purification of Carbon Monoxide Dehydrogenase, A Nickel Enzyme from *Clostridium thermoaceticium*," *J.Biol. Chem.* **1980**, 255, 7174-7180. (b) Yagi, T., "Enzymic Oxidation of Carbon Monoxide," *Biochim. Biophys. Acta.* **1958**, 30, 194-195. (c) Menon, S.; Ragsdale, S., "Role of the [4Fe-4S] Cluster in Reductive Activation of the Cobalt Center of the Corrinoid Iron-Sulfur Protein from *Clostridium thermoaceticum* During Acetate Biosynthesis," **1998**, 37, 5689-5698.
- 3. Ragsdale, S. W.; Kumar, W., "Nickel-Containing Carbon Monoxide Dehydrogenase/acetyl-CoA Synthase," *Chem. Rev.* **1996**, *7*, 2515-2539.
- 4. http://165.91.177.45/CODH.htm
- DeRose, V. J.; Telser, J.; Anderson, M. E.; Lindahl, P. A.; Hoffman, B. M., "A Multinuclear ENDOR Study of the C-Cluster in CO Dehyrdrogenase from *Clostridium thermoaceticum:* Evidence for H₂O and Histidine Coordination to the [Fe₄S₄] Center," J. Am. Chem. Soc. 1998, 120, 8767-8776.
- 6. Shin, W.; Lindahl, P., "Function and CO Binding Properties of the NiFe Complex in Carbon Monoxide Dehydrogenase from *Clostridium thermoaceticum*," *Biochem.* 1992, 31, 12870-12875.
- (a) Stavropoulos, P.; Muetterties, M. C.; Carrié M.; Holm, R. H., "Structural and Reaction Chemistry of Nickel Complexes in Relation to Carbon Monoxide Dehydrogenase: A Reaction System Simulating Acetyl-Coenzyme A Synthase Activity," J. Am. Chem. Soc. 1991, 113, 8485-8492. (b) Tommasi, I.; Aresta, M.; Giannoccaro, P.; Quaranta, E.; Fragale, C., iBioinorganic Chemistry of Nickel and Carbon Dioxide: A Ni Complex Behaving As A Model System for Carbon Monoxide Dehydrogenase Enzyme,î Inorganica Chimica Acta 1998, 272, 38-42.

8. Ragsdale, S. W.; Wood, H. G.; Antholine, W. E., "Evidence That an Iron-Nickel Carbon Complex is Formed by Reaction of CO with CO Dehydrogenase from *Clostridium thermoaceticum*," *Proc. Natl. Acad. Sci. USA* **1985**, *82*, 6811-6814.

38

- Fan, C.; Gorst, C. M.; Ragsdale, S. W.; Hoffman, B. M., "Characterization of the Ni-Fe-C Complex Formed by Reaction of Carbon Monoxide Dehydrogenase from *Clostridium thermoaceticum* by Q-Band ENDOR," *Biochemistry* 1991, 30, 431-435.
- Lu, W.; Ragsdale, S. W., "Reductive Activation of the Coenzyme A/Acetyl-CoA Isotopic Exchange Reaction Catalyzed by Carbon Monoxide Dehydrogenase from *Clostridium thermoaceticum* and Its Inhibition by Nitrous Oxide and Carbon Monoxide," J. Biol. Chem. 1991, 266, 3554-3564.
- Xia, J.; Hu, Z.; Popescu, C. V.; Lindahl, P. A., M, nck, E., "M^{ssbauer} and EPR Study of the Ni-Activated α-Subunit of Carbon Monoxide Dehydrogenase from *Clostridium thermoaceticum*," J. Am. Chem. Soc. 1997, 119, 8301-8312.
- Ragsdale, S. W.; Ljungdahl, L. G.; DerVartanian, D. V., "EPR Evidence For Nickel-Substrate Interaction In Carbon Monoxide Dehydrogenase From *Clostridium* thermoaceticum," Biochem. Biophys. Res. Comm. 1982, 108, 658-663.
- 13. Lebertz, H.; Simon, H.; Courtney, L. F.; Benkovic, S. J.; Zydowsky, L. D.; Lee, K.; Floss, H. G., "Stereochemistry of Acetic Acid Formation from 5-Methyltetrahydrofolate by *Clostridium thermoaceticum*," J. Am. Chem. Soc. **1987**, 109, 3173-3174.
- Barondeau, D. P.; Lindahl, P. A., "Methylation of Carbon Monoxide Dehydrogenase from *Clostridium thermoaceticum* and Mechanism of Acetyl Coenzyme A Synthesis," J. Am. Chem. Soc. 1997, 119, 3959-3970.
- Russel, W. K.; Stalhandske, C. M. V.; Xia, J.; Scott, R. A.; Lindahl, P., "Spectroscopic, Redox, and Structural Characterization of the Ni-Labile and Nonlabile Forms of the Acetyl-CoA Synthase Active Site of Carbon Monoxide Dehydrogenase," J. Am. Chem. Soc. 1998, 120, 7502-7510.