Model Chemistry on Metal Surfaces: Synthesis, Structure and Reactivity Studies of Tungsten-Osmium Mixed-Metal Clusters

Yun Chi

```
Final Seminar
```

June 5, 1986

Recent interest in the chemistry of cluster compounds results from the belief that clusters may serve as models for metal surfaces.<sup>1</sup> Cluster bound alkylidyne, vinylidene, alkylidene, alkyne, alkene and hydride groups are of particular importance due to their implicated role in catalytic processes of metal surfaces.<sup>2</sup> Currently mixed-metal clusters are also under intense scrutiny, because of the advantages of enhanced reactivity and selectivity over their homonuclear counterparts.<sup>3</sup>

CpWOs<sub>3</sub>(CO)<sub>9</sub>( $\mu$ -O)( $\mu_3$ -CCH<sub>2</sub>Tol), 1, a complex with triply bridging alkylidyne and doubly bridging oxo ligands has been prepared from pyrolysis of CpWOs<sub>3</sub>-(CO)<sub>11</sub>[ $\mu_3$ - $\eta^2$ -C(O)CH<sub>2</sub>Tol]<sup>4</sup> by loss of two equivalents of CO.<sup>5</sup> Compound 1 undergoes monocarbonylation to give CpWOs<sub>3</sub>(CO)<sub>10</sub>( $\mu$ -O)( $\mu_3$ -CCH<sub>2</sub>Tol), which is an intermediate in the acyl C-O bond scission process (eq 1). Reaction of 1 with phosphorus donors generates both addition and substitution products:



Treatment of 1 with diphenylacetylene provides a butterfly cluster CpWOs<sub>3</sub>-(CO)<sub>8</sub>( $\mu$ -O)( $\mu$ <sub>3</sub>-CCH<sub>2</sub>Tol)(C<sub>2</sub>Ph<sub>2</sub>) with retention of the alkylidyne functional group and addition of alkyne ligand. This complex undergoes reaction under an H<sub>2</sub> atmosphere, or decarbonylation to give CpWOs<sub>3</sub>(CO)<sub>7</sub>( $\mu$ -H)<sub>2</sub>( $\mu$ -O)( $\mu$ <sub>4</sub>- $\eta$ <sup>2</sup>-CCHTol)-(CPh=CHPh) or CpWOs<sub>3</sub>(CO)<sub>7</sub>( $\mu$ -O)( $\mu$ - $\eta$ <sup>2</sup>-CHCHTol)(C<sub>2</sub>Ph<sub>2</sub>), respectively. The former represents the only example of alkylidyne to vinylidene transformation under an H<sub>2</sub> atmosphere; the latter reacts with CO inducing coupling between coordinated alkyne, and alkenyl moieties (which arises from alkylidyne by means of a 1,2-hydrogen migration) to form two butadienyl complexes CpWOs<sub>3</sub>(CO)<sub>8</sub>( $\mu$ -O)[C(Ph)=C-(Ph)CH=CHTol](which exists as isomers).

Reaction of 1 with various HX reagents, X = H, Cl, Br and  $SC_6H_5$ , provides three alkylidene complexes with the formulation of  $CpWOs_3(CO)_9(\mu-X)(\mu-O)(\mu-CHCH_2TO1)(isomers a, b and c)$ . In the case of the hydrido-alkylidene all three isomers have been observed, <sup>6</sup> the interconversion of isomers a and b and c, involving H-migration and alkylidene isomerization, respectively. For the other alkylidene complexes,  $X \neq H$ , only b isomers and c isomers are isolated, of which isomer c is the thermodynamically more stable form. Treatment of  $CpWOs_3(CO)_9(\mu-C1)(\mu-O)(\mu-CHCH_2TO1)(isomers b and c)$  with gaseous BCl<sub>3</sub> generates  $CpWOs_3(CO)_9(\mu-C1)(\mu-OBCl_3)(\mu-CHCH_2TO1)$  in which BCl<sub>3</sub> has been found to coordinate the bridging oxo-ligand, thereby activating the reverse alkylidene isomerization from isomers-c to b. The structures of a, b and c are confirmed by the structural studies on  $CpWOs_3(CO)_9(\mu-H)(\mu-O)(\mu-CHCH_2TO1)$ , respectively.



Reaction of 1 with cyclooctene under N<sub>2</sub> or H<sub>2</sub> atmosphere affords CpWOs<sub>3</sub>-(CO)<sub>8</sub>(C<sub>8</sub>H<sub>1</sub>4)(µ-H)(µ-O)(µ-CCHTOl), 2, or CpWOs<sub>3</sub>(CO)<sub>8</sub>(C<sub>8</sub>H<sub>1</sub>4)(µ-H)(µ-O)(µ-CHCH<sub>2</sub>Tol), respectively. The reaction presumably proceeds by cyclooctene substitution to give an alkylidyne intermediate CpWOs<sub>3</sub>(CO)<sub>8</sub>(C<sub>8</sub>H<sub>1</sub>4)(µ-O)(µ<sub>3</sub>-CCH<sub>2</sub>Tol); the interconversion between the alkylidene, vinylidene and alkylidyne species are discussed (eq 2). Furthermore, each C<sub>8</sub>H<sub>1</sub>4 substituted alkylidene and vinylidene complex exists as two isomers in solution resulting from H-migration and vinylidene "rotation", respectively.



Compound 2 undergoes olefin exchange with ethylene to provide CpWOs<sub>3</sub>(CO)<sub>8</sub>-(C<sub>2</sub>H<sub>4</sub>)(µ-H)(µ-O)(µ-CCHTol), for which an X-ray diffraction study reveals an unusual feature in that the C<sub>2</sub>H<sub>4</sub> group is coordinated to an Os atom associated with the bridging hydride. The reversible C<sub>2</sub>H<sub>4</sub> insertion into Os-H-Os bond and its reverse, β-hydride elimination,<sup>8</sup> has been established by dynamic NMR techniques. Exchange with either cis or trans-C<sub>2</sub>H<sub>2</sub>(CO<sub>2</sub>CH<sub>3</sub>)<sub>2</sub> gives another extreme of such olefin insertion reaction, an alkyl complex CpWOs<sub>3</sub>(CO)<sub>8</sub>(µ-O)(µ-CCHTol)[CH-(CO<sub>2</sub>CH<sub>3</sub>)CH<sub>2</sub>(CO<sub>2</sub>CH<sub>3</sub>)] being isolated, as demonstrated by an X-ray diffraction study.

The related insertion of an alkyne into the Os-H-Os bond has also been discovered by exchange of  $C_8H_{1,4}$  with diphenylacetylene to give  $CpWOs_3(CO)_8(\mu_3-0)-(\mu_3-\eta^2-CCHTol)(\mu-\eta-CPh=CHPh)$ , which has been structurally characterized. Subsequent reaction with  $C_8H_{1,4}$  regenerates 2, suggesting that the insertion of the alkyne is reversible. Reaction with  $CpW(CO)_2(CTol)$ , equivalent to be an alkyne by the isolobal analogy, provides a TBP pentanuclear cluster  $Cp_2W_2Os_3(CO)_9(\mu_3-O)-(\mu_3-\eta^2-CCHTol)$ . Variable temperature NMR studies show that the vinylidene ligand undergoes a one-third cycle of circumambulation, as indicated in the theoretical calculation by Hoffmann on  $M_3(\mu_3-\eta^2-C=CH_2)$  systems.

Finally, an attempt was made to optimize conditions for the synthesis of  $CpWOs_3(CO)_{11}[\mu_3-n^2-C(0)CH_2TO1]$  from the reaction of  $H_2Os_3(CO)_{10}$  with  $CpW(CO)_2-(CTO1)$ , in which three mixed-metal compounds are formed, i.e.,  $CpWOs_3(CO)_{11}[\mu_3-n^2-C(0)CH_2TO1]$ ,  $CpWOs_3(CO)_{10}(\mu_3-CTO1)_2H^{10}$  and  $Cp_2W_2Os(CO)_7(\mu_3-n^2-C_2TO1_2)$ , <sup>11</sup> This effort resulted in the isolation of a fourth WOs\_3 cluster [ $CpW(CO)_3$ ]( $\mu$ -H)<sub>2</sub>Os\_3-( $CO)_9(\mu_3-CTO1)^{12}$ , which has been identified as an intermediate in the formation of  $CpWOs_3(CO)_{10}(\mu_3-CTO1)_2H$ . Reaction of  $D_2Os_3(CO)_{10}$  with  $CpW(CO)_2(CTO1)$  reveals a remarkable isotope effect which is manifested in the increased yield of deuterated  $CpWOs_3(CO)_{11}[\mu_3-n^2-C(0)CD_2TO1]$ , from 26% to 49%. Pyrolysis of  $Cp_2W_2Os-(CO)_7(\mu_3-n^2-C_2TO1_2)$  initiates a reversible alkyne C-C bond scission to give  $Cp_2W_2Os(CO)_5(\mu-CTO1)(\mu_3-CTO1).^{13}$ 

## References

- Muetterties, E. L.; Rhodin, T. N.; Band, E.; Brucker, C. F.; Pretzer, W. R. Chem. Rev., 1979, 79, 91.
- 2. Muetterties, E. L. Chem. Rev., 1979, 79, 479.
- Sinfelt, J. H. in "Bimetallic Catalysts", John Willey & Son, New York, 1983.
- 4. (a) Shapley, J. R.; Park, J. T.; Churchill, M. R.; Bueno, C.; Wasserman,
  H. J. J. Amer. Chem. Soc., 1981, 103, 7385.
  - (b) Park, J. T.; Shapley, J. R.; Churchill, M. R.; Bueno, C. Inorg. Chem., 1983, 22, 1579.
- Shapley, J. R.; Park, J. T.; Churchill, M. R.; Ziller, J. W.; Beanan, L. R. J. Amer. Chem. Soc., 1984, 106, 1144.
- See: Park, J. T. Ph.D. Thesis, University of Illinois at Urbana-Champaign, 1983, Chapter 4; although the structural assignment for isomers b and c is incorrect.
- 7. Churchill, M. R.; Li, Y. J. J. Organomet. Chem., 1985, 294, 367.
- Collman, J. P.; Hegedus, L. S. in "Principles and Application of Organo transition Metal Chemistry" University Science Books, Mill Valley, California, 1980, Chapter 6.
- Schelling, B. E. R.; Hoffmann, R. J. Amer. Chem. Soc., 1979, 101, 3456.
- Park, J. T.; Shapley, J. R.; Churchill, M. R.; Bueno, C. <u>Inorg. Chem.</u>, 1984, 23, 4476.
- 11. Churchill, M. R.; Bueno, C.; Wasserman, H. J. Inorg. Chem., 1982, 21, 640.
- 12. Chi, Y.; Shapley, J. R.; Churchill, M. R.; Li, Y. J. <u>Inorg. Chem</u>., in press.
- 13. Chi, Y.; Shapley, J. R. Organometallics, 1985, 4, 1900.