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COMBINING PHOTOREDOX AND ORGANOCATALYSIS 

In 2008, MacMillan and coworkers reported the combination of photoredox and chiral enamine 

catalysis to allow for the first catalytic asymmetric, intermolecular α-alkylation of aldehydes (Scheme 

1).1 The proposed mechanism for this reaction involves the addition of an electrophilic radical species to 

a chiral, electron rich enamine in a highly enantioselective fashion, allowing for the preparation of α-

alkylated aldehydes in good to outstanding enantiomeric excess (88-99%). This reaction has also been 

extended to the asymmetric α-trifluoromethylation, benzylation, and amination of aldehydes.2 In 2014, 

Luo and co-workers reported an elegant asymmetric alkylation of β-ketoester and β-ketoamide 

substrates in excellent yields and enantioselectivities via photoredox/chiral enamine dual catalysis, 

further demonstrating the adaptability of this reaction platform.2 

Scheme 1. Asymmetric alkylation via combined photoredox and enamine catalysis 

 
Rovis and co-workers have recently disclosed an asymmetric α-acylation of tertiary amines through the 

combination of N-heterocyclic carbene catalysis with a photoredox catalytic cycle.2 Photoredox catalysis 

has also been combined with anion-binding catalysis for the enantioselective preparation of β-amino 

esters, as well as chiral Brønsted acid catalysis in an elegant aza-pinacol cyclization.2 While these 

examples demonstrate the utility of tandem photoredox/organocatalysis, each requires the use of a 

specifically designed organic catalyst. In recent years, the use of chiral Lewis acid catalysis has emerged 

as a potentially more general solution to asymmetric C-C bond formation promoted by a photoredox 

catalytic cycle. 

PHOTOREDOX/CHIRAL LEWIS ACID DUAL CATALYSIS 

Yoon and coworkers have recently demonstrated that chiral Lewis acid catalysis can be 

successfully paired with a photoredox cycle for asymmetric [2+2] photocycloadditions (Scheme 2).3 In 

this example, the ruthenium photoredox catalyst effects single electron reduction of the enone substrate, 

which is activated by a chiral scandium Schiff base complex. This radical anion intermediate is then 

positioned to undergo an enantioselective  [2+2] cycloaddition with high stereocontrol (from 84-97% ee) 

and generally good yields (from 80% yield). 
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Scheme 2. Enantioselective [2+2] Photocycloadditions Promoted by Chiral Lewis Acids. 

This dual catalysis mode was later applied to the asymmetric conjugate addition of α-amino radicals. 

Chiral Lewis acid activation of enone acceptors allowed for the conjugate addition of photoredox 

generated α-amino radicals in up to 96% ee and 96% yield.4 

Meggers and coworkers have recently demonstrated that a chiral-at-metal iridium photocatalyst 

is capable of acting as both a photoredox catalyst and a chiral Lewis acid for the alkylation of 2-acyl 

imidazoles in outstanding yields (84-100%) and selectivities (90-99% ee).5 While the use of chiral-at-

metal complexes in this area of catalysis is still underdeveloped, catalysts of this type will likely be 

readily applied to a variety of other transformations, providing for highly enantioenriched products with 

a single metal catalyst.  

Scheme 3. Asymmetric Photoredox Catalysis via a Chiral-at-Metal Iridium Complex. 

 
OUTLOOK 

The last decade has seen exciting new trends emerging in the field of asymmetric photoredox 

dual catalysis. Recent developments in chiral Lewis acid co-catalysis, specifically using chiral-at-metal 

catalysts, appear as a promising direction for expanding the scope of reactions amenable to this 

methodology. While a demonstration of the applicability of these methods in the context of complex 

molecule synthesis remain to be seen, it is clear that photoredox dual catalysis offers a unique and 

complementary method to traditional asymmetric C-C bond forming processes.  
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