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Factors tha: Affec: the Rate of Biological Electron ~ransfer 

Brandon J. Cruickshank Literature Seminar February 16, 1989 

Biological electron _transfer has been stl.ldied extensively '..:1 recent yea:-s 
[1]. In this process, electrons are tran~ferred between metal sites or orga:'lic 
prosthetic groups withi~ a si~gle protein or complex of proteins such that the 
electron must traverse a cons'..derable amount of intervening pro~ein matrix [ib]. 
Electron transfer between sites separated by up to 20-30 A is known in diverse 
biological electron transfer reactions including energy channel'..ng in the photo­
synthetic and respiratory electron transport chains [le]. 

Four factors which have been shown to affect the rates of Jiological electron 
transfer are: (1) the intersite separation distance [2-4], (2) the nature of the 
intervening medium [5], (3) the orientation or conformation of ~he protein [6-8], 
and (4) the driving force for the reaction [9]. Each of these four areas has 
received increased attention recently, although current efforts appear to be 
concen~rating on the effects of orientation and driving force on electron trans­
fer. 

In general, research in biological electron transfer follows two schemes. 
The first scheme involves the covalent binding of small redox active inorganic 
molecules to specific residues on the protein surface. Secondly, a physiological 
couple, either electrostatic or covalent in nature, can be formed between two 
proteins. Flash photolysis or pulse-radioloysis is used to ini:iate the electron 
transfer between the small mo:ecule and the active site or between the prote'..n 
partners, and then the electron transfer process is monitored by spectroscop'..c 
techniques. Via computer modeling and the known binding site, ~he distance be­
tween the metal center and the orientation of the redox partners can be determined 
fairly accurately. Site-spec'..fic mutagenesis and metal substitution can be ~sed 
to vary the pathway anc the driving force for the electron transfer reaction, 
respectively. 

Early work by Gray on the effect of distance on the rate o~ electron transfer 
involved attempting to analyze bimolecular pro~ein/small inorga~ic molecule elec­
tron transfer rate cons:ants '.. :1 terms of the acceptor/donor dis:ance i:'l an assumed 
precursor complex [3]. Differences in rates ~ere attributed so:ely as increases 
in the extent of ~enetration cf the redox age~: into the protei~. thereby re~ucing 
the separation distance. Rece:'lt work has focllsed on ele ctron transfer between 
sites that are se~arated by a ~nown, fixed dis:ance. In fact, ~ray and cowor~ers 
have been able to cova:;.ently ~ ~tach Rua5 (where a "" NH 3) to fou.~ surfc.ce acc,ossi­
ble histidine imidazoles of m;oglobin, each of which is a different distance from 
the metal center :4J. 
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Site-specific mutagenesis has been used cs a tc~l to vary the electron trans­
fer pathway [5]. Hoffman and coworkers have appliec this method to change the 
phenylalanine residue at position 82 of cytocr.rome c (in a preformed cytochrome 
c/Zn cytochrome c peroxidase complex) which is kn~wr. to be involved in the elec­
tron transfer pathway [5a]. They have found a 10 :~crease in rate for aromatic 
residues compared to aliphatic residues. There are :~o explanations for this. 
observed difference in rate. The most likely explar.ation involves hole transfer 
from ZnCcP+ to Fe11cc being facilitated because the ~eme ~-electron systems are 
coupled through the intervening aromat~c rings of cy\.ochrome c residue 82 and 
His-181 of cytochrome c peroxidase. Another Elternative for the observed differ­
ence in rates could be explained by conformational '"gating11 [6]. For the ali­
phatic derivatives the rate limiting step might be a conformational conversion to 
a protein orientation that undergoes rapid electron transfer. 

McLendon and coworkers have observed conformational "gating" in a cytochrome 
c/cytochrome b2 complex in which the heme of cytochrome c has been substituted 
with Zn porph, and porph [7]. Within these three co~plexes, the driving force 
varies by approximately 0.60 eV. Marcus theory predicts that the electron trans­

·fer rate should· increase with driving force until -lG>>. (reorganization energy) 
[10]. Considering the variation in drivin~ force, a large difference in electron 
transfer rates shouid be observed; however, the rates are essentially equivalent. 
The rate limiting step is most likely a conformational conversion to a protein 
orientation which is capable of electron transfer. This conversion is unaffected 
by a change in driving force. Recent research by Kostic and coworkers has focused 
on the electron transfer rate difference observed between electrostatic and co­
valent complexes of cytochrome c and platocyanin [8]. The electrostatic complex 
has a ket ~ 1000 s-1 , while th~ covalent comp:exes tave electron transfer rate 
constants of · approximately O s 1 The covalent isor:ers are 11 locked" in the wrong 
orientation for electron transfer. And, due to the ~ultiple bond linking the 
proteins, they cannot relax into an appropria~e orientation required for intra­
complex electron transfer. 

The fourth factor that affects the rate cf elec\.ron transfer is the driving 
force for the reaction. Originally, it was t~ought \.hat proteins intrinsically 
had small reorganization energies (>.), so th2: the : ~verted region could be ob­
s~rved at small free energy (ilG) values. It ~s now ~nown that the reorganization 
energies for proteins are much larger than predictec [le]. Recent efforts by Gray 
[9a] and McLendon [9b] have claimed to fit M~r~us tteory, although their data 
could also fit a straight line. 
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There is a need for additional ways to vary the driving ~orce ~!thin a particular 
protein couple to verify a decrease in electron transfer rate c~ce -~G exceeds A. 
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