Hydrogen (H\textsubscript{2}) has several properties which make it a potentially ideal energy carrier for transportation, military hardware, and auxiliary power generation. The primary ecological benefits of H\textsubscript{2} as a fuel are that its combustion results in the release of water instead of greenhouse gasses or other pollutants, and that it can be generated from renewable sources. As a fuel, H\textsubscript{2} (120 MJ/kg) contains more energy per kilogram than either gasoline (44.5 MJ/kg) or natural gas (50 MJ/kg), but has not seen widespread use because of its low density and difficulty of storage.1 Liquid H\textsubscript{2} has a density of about 71 g/L at 20 K compared to about 700 g/L for gasoline at ambient temperatures; as a result, H\textsubscript{2} requires a much greater storage volume to achieve the same amount of energy.1

The US Department of Energy has set forth targets for H\textsubscript{2} storage systems, which must operate at ambient temperatures (-20 to 50 °C), at pressures below 100 bar, and allow a vehicle range of about 300 miles. To achieve these goals, systems must be robust, lightweight, cost effective, and achieve capacity of 9 wt% H\textsubscript{2} and 81 g/L H\textsubscript{2} by 2015.2 Various approaches including chemical hydrides, liquid H\textsubscript{2}, compressed H\textsubscript{2}, and physisorption onto metal-organic frameworks have been investigated, but none is economically viable at present.3,4 Metal-organic frameworks (MOFs) are particularly interesting because they bind H\textsubscript{2} reversibly and have highly tunable structures. MOFs consist of metal containing building units linked together by organic struts to give a highly porous, repeating network.

Currently, the benchmark for H\textsubscript{2} adsorption in a metal-organic framework is 7.5 wt% and 32 g/L (77 K, 70 bar) for MOF-177 prepared by Yaghi and coworkers.5 The primary determinant of overall H\textsubscript{2} uptake is the surface area and pore volume of the MOF; however, for most MOFs, effective adsorption takes place under cryogenic conditions.

\textbf{Figure 1.} A: Hydrogen gas sorption isotherm for MOF-5 at 78 K B: 298 K

H\textsubscript{2} uptake is low at ambient temperature because the MOF-H\textsubscript{2} interactions are weak; specifically, the heat of adsorption of H\textsubscript{2} to MOFs (\(\Delta H_{\text{ads}}\)) is too low. Bhatia and Myers have calculated that a heat of adsorption of 15.1 kJ/mol is required for reversible physisorption of H\textsubscript{2}.
Several strategies have been suggested to improve the H\textsubscript{2} heat of adsorption to MOFs. Reducing the pore size and dimensions has the effect of introducing weak H\textsubscript{2}-framework interactions from both the adsorbing surface as well as the opposite surface, thus increasing the overall ΔH_{ads}.8 Catenation achieves a similar effect by interweaving two frameworks within one another to reduce pore volume.9 Incorporating unsaturated metal sites into MOFs is the most promising strategy for improving H\textsubscript{2} ΔH_{ads}; metal cations induce a dipole in H\textsubscript{2}, resulting in a stronger interaction than the dispersion forces observed in standard MOFs.4

One method of introducing metal cations involves removal of coordinated solvent molecules to create coordinatively unsaturated metal centers. Research on dehydrated Prussian blue analogues by Kaye and Long revealed that unsaturated metal ions within a framework can alter the observed ΔH_{ads} because of the differing strengths of M2+-H\textsubscript{2} interaction.10 Dinca and Long extended this work to metal-organic frameworks by using neutron diffraction to study Mn2+ sites within methanol exchanged, partially desolvated Mn\textsubscript{2}[(Mn\textsubscript{4}Cl)\textsubscript{3}(BTT)\textsubscript{3}(CH\textsubscript{3}OH)\textsubscript{10}]\textsubscript{2}, which showed a higher initial H\textsubscript{2} ΔH_{ads} than the initial DMF solvated framework, [Mn-(DMF)\textsubscript{3}][(Mn\textsubscript{4}Cl)\textsubscript{3}(BTT)\textsubscript{3}(DMF)\textsubscript{12}]\textsubscript{2} (Figure 2).11 Cation exchange reactions were performed on this framework to study cation effects and revealed a dependence of H\textsubscript{2} adsorption on the metal cation identity (Figure 3).12 Zecchina and coworkers verified the effect of varying cations within frameworks by probing the metal-H\textsubscript{2} interaction with variable temperature IR spectroscopy.13

Another method to incorporate unsaturated metal sites into MOFs is metal doping of existing MOFs through framework reduction. Han and Goddard have shown through theoretical calculations that alkali metal doping can increase H\textsubscript{2} ΔH_{ads} and H\textsubscript{2} uptake at ambient temperatures over non-doped MOFs.14 Mulfort and Hupp explored the correlation of ΔH_{ads} and alkali doping ions and found experimentally that cation doping can increase heat of adsorption.15

Incorporation of unsaturated metal cations into metal-organic frameworks is a promising strategy to increase H\textsubscript{2} adsorption capacity at ambient conditions. Future research coupling these stronger interactions with large surface area will allow greater H\textsubscript{2} storage capacity in practical operating ranges.

References

