CHEMISTRY 101
Hour Exam II
October 30, 2018
McCarren

Name \qquad
Signature \qquad
Section \qquad

Q: What is the most important subject a witch learns in school? A: Spelling.

This exam contains 17 questions on 10 numbered pages. Check now to make sure you have a complete exam. You have one hour and thirty minutes to complete the exam. Determine the best answer to the first 15 questions and enter these on the special answer sheet. Also, circle your responses in this exam booklet. Show all of your work and provide complete answers to questions 16 and 17. A periodic table and one sheet of scratch paper are provided after the exam. Anything written on the periodic table and scratch paper will not be graded.

$1-15$	$(30 \mathrm{pts})$.	-
16	$(15 \mathrm{pts})$.	-
17	$(15 \mathrm{pts})$.	-
Total	$(60 \mathrm{pts})$.	-

Useful Information:

$1 \mathrm{~L}=1000 \mathrm{~mL}$ (exactly)
Always assume ideal behavior for gases (unless explicitly told otherwise).

$$
\begin{array}{ll}
\mathrm{PV}=\mathrm{nRT} & \mathrm{R}=0.08206 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol} \cdot \mathrm{~K} \approx 0.0821 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol} \cdot \mathrm{~K} \\
\mathrm{~K}={ }^{\circ} \mathrm{C}+273 & \mathrm{~N}_{\mathrm{A}}=6.022 \times 10^{23}=1 \mathrm{~mole}
\end{array}
$$

Solubility Rules:

1. Most nitrate salts are soluble.
2. Most salts of sodium, potassium, and ammonium cations are soluble.
3. Most chloride salts are soluble. Exceptions: silver(I), lead(II), and mercury(I) chloride.
4. Most sulfate salts are soluble. Exceptions: calcium, barium, and lead(II) sulfate.
5. Most hydroxide salts can be considered insoluble. Soluble ones: sodium, potassium, ammonium, and calcium hydroxide.
6. Consider sulfide, carbonate, and phosphate salts to be insoluble. Soluble ones: sodium, potassium, and ammonium.

Write the balanced equation for the reaction below and use it to answer the next two questions.
Elemental boron is produced in one industrial process through the heating of diboron trioxide with magnesium metal. Magnesium oxide is also produced in this reaction.

1. What is the sum of the coefficients for this balanced equation when balanced in standard form (with the lowest possible whole numbers)?
a. 4
b. 6
c. 7
d. 8
e. 9
2. If 2.50 moles of diboron trioxide react with sufficient magnesium, what is the total mass of both of the products produced in this reaction?
a. 356 g
b. 302 g
c. 54.1 g
d. 12.5 g
e. 2.5 g

Use the diagram below to answer question 3 .

Unbalanced reaction: $\mathrm{A}+\mathrm{B}_{2} \rightarrow \mathrm{~A}_{\mathrm{x}} \mathrm{B}_{\mathrm{y}}$
3. Consider the container above holding four atoms of hypothetical element A and four diatomic molecules consisting of hypothetical element B. These react together to form some compound $\mathrm{A}_{\mathrm{x}} \mathrm{B}_{\mathrm{y}}$, where x and y represent integers, as shown in the unbalanced equation above. What is true about the limiting reactant when these react?
a. Both atom A and molecule B_{2} must be limiting reactants because there are same number of particles of each are present which will therefore be used up at the same time.
b. Molecule B_{2} must be the limiting reactant because two atoms of element B are used every time only one atom of element A is used.
c. Molecule B_{2} must be the limiting reactant if the coefficient of A is greater than the coefficient of B_{2} in the balanced equation.
d. Atom A must be the limiting reactant if the product formed in this reaction is AB .
e. Atom A must be limiting reactant if the product formed in this reaction is AB_{4}.

Use the information given below to answer the next three questions:
Consider a 1.00 M glucose solution with volume of 4.0 liters.

- 2.0 L of this solution is poured into a container that is labeled solution A.
- 1.0 L of this solution is poured into another container and 3.00 liters of water are added. This is labeled solution B.
- 1.0 L of this solution is left and is labeled solution C .

4. Select the option which correctly ranks the solutions from highest to lowest concentration. It is possible that two or more of the solutions may have equal concentrations.
a. $\mathrm{A}=\mathrm{C}>\mathrm{B}$
b. $\mathrm{B}>\mathrm{A}>\mathrm{C}$
c. $\mathrm{B}>\mathrm{A}=\mathrm{C}$
d. $\mathrm{C}>\mathrm{A}>\mathrm{B}$
e. $\mathrm{A}=\mathrm{B}>\mathrm{C}$
5. Select the option which correctly ranks the solutions from greatest to least number of moles of solute. It is possible that two or more of the solutions may have equal moles of solute.
a. $\mathrm{A}=\mathrm{C}>\mathrm{B}$
b. $\mathrm{A}>\mathrm{B}=\mathrm{C}$
c. $\mathrm{A}=\mathrm{B}=\mathrm{C}$
d. $\mathrm{B}>\mathrm{A}>\mathrm{C}$
e. $B=C>A$
6. Determine the mass of glucose $(M M=180 . \mathrm{g} / \mathrm{mol})$ that would need to be added to solution B to give it the same concentration as solution C. Assume the volume of the solution remains the same regardless of the amount of solute added.
a. $180 . \mathrm{g}$
b. $360 . \mathrm{g}$
c. $540 . \mathrm{g}$
d. 720.g
e. This is not possible because solution B already has a greater concentration than solution C.

For the next two questions, refer to the table below which represents combinations of aqueous solutions similar to those which you observed in the precipitation reactions video. Determine whether or not a precipitate has formed for each combination, and if it has, give the formula. An example has been done for you for one of the combinations below.

	Sodium chloride	Sodium sulfate	Sodium carbonate
Barium nitrate			
Lead(II) nitrate			PbCO_{3}

7. Determine the number of combinations (out of 6) which can be expected to form precipitates:
a. 2
b. 3
c. 4
d. 5
e. 6
8. How many of the following formulas represent precipitates formed in this series of reactions?

- BaCl_{2}
- BaSO_{4}
- BaCO_{3}
- PbCl_{2}
- $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$
a. 1
b. 2
c. 3
d. 4
e. 5 (All represent formulas of precipitates formed.)

In mining iron from iron oxide ores, one of the reactions involves purifying elemental iron from iron oxide using carbon monoxide according to the equation shown below. Use this reaction to answer the next two questions.

$$
\mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+4 \mathrm{CO}(\mathrm{~g}) \rightarrow 3 \mathrm{Fe}(\mathrm{~s})+4 \mathrm{CO}_{2}(\mathrm{~g})
$$

9. If 3.00 moles of $\mathrm{Fe}_{3} \mathrm{O}_{4}$ react, how many moles of carbon monoxide are also needed to react?
a. 0.750 moles
b. $\quad 1.00$ moles
c. 4.00 moles
d. 9.00 moles
e. $\quad 12.0$ moles
10. If 20.0 moles of $\mathrm{Fe}_{3} \mathrm{O}_{4}$ react with 20.0 moles of CO , how many moles of excess reactant are left over after the reaction?
a. $\quad 5.00$ moles
b. $\quad 10.0$ moles
c. $\quad 15.0$ moles
d. 20.0 moles
e. 35.0 moles

Consider the reaction between sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ and sodium hydroxide to answer the next two questions.
11. What is the molecular equation for this reaction?
a. $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{NaOH}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{NaSO}_{4}(\mathrm{aq})$
b. $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{NaOH}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})$
c. $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
d. $2 \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{~s})$
e. $2 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
12. It is necessary to use 100.0 mL of NaOH to completely react with (neutralize) 200.0 mL of $2.00 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$. What is the concentration of the sodium hydroxide solution?
a. $\quad 1.00 \mathrm{M}$
b. 2.00 M
c. 4.00 M
d. 8.00 M
e. 16.0 M

Aqueous potassium carbonate and aqueous tin(IV) chloride react according to the following molecular equation:

$$
2 \mathrm{~K}_{2} \mathrm{CO}_{3}(\mathrm{aq})+\mathrm{SnCl}_{4}(\mathrm{aq}) \rightarrow \mathrm{Sn}\left(\mathrm{CO}_{3}\right)_{2}(\mathrm{~s})+4 \mathrm{KCl}(\mathrm{aq})
$$

In this situation, 1.00 L of 3.00 M potassium carbonate reacts with 2.00 L of $2.00 \mathrm{M} \operatorname{tin}(\mathrm{IV})$ choride to form the solid product. Use this information to answer questions 13 through 15.
13. What is the complete ionic equation for this reaction?
a. $2 \mathrm{~K}_{2}^{+}(\mathrm{aq})+2 \mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})+\mathrm{Sn}^{+4}(\mathrm{aq})+\mathrm{Cl}_{4}^{-}(\mathrm{aq}) \rightarrow \mathrm{Sn}\left(\mathrm{CO}_{3}\right)_{2}(\mathrm{~s})+4 \mathrm{~K}^{+}(\mathrm{aq})+4 \mathrm{Cl}^{-}(\mathrm{aq})$
b. $4 \mathrm{~K}^{+}(\mathrm{aq})+2 \mathrm{CO}_{3}^{-}(\mathrm{aq})+\mathrm{Sn}^{+2}(\mathrm{aq})+4 \mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow \mathrm{Sn}\left(\mathrm{CO}_{3}\right)_{2}(\mathrm{~s})+4 \mathrm{~K}^{+}(\mathrm{aq})+4 \mathrm{Cl}^{-}(\mathrm{aq})$
c. $4 \mathrm{~K}^{+}(\mathrm{aq})+2 \mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})+\mathrm{Sn}^{+4}(\mathrm{aq})+4 \mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow \mathrm{Sn}\left(\mathrm{CO}_{3}\right)_{2}(\mathrm{~s})+4 \mathrm{~K}^{+}(\mathrm{aq})+4 \mathrm{Cl}^{-}(\mathrm{aq})$
d. $4 \mathrm{~K}^{+}(\mathrm{aq})+2 \mathrm{CO}_{3}^{2-}(\mathrm{aq})+\mathrm{Sn}^{+4}(\mathrm{aq})+4 \mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow \mathrm{Sn}^{+4}(\mathrm{aq})+2 \mathrm{CO}_{3}^{-2}(\mathrm{aq})+4 \mathrm{KCl}(\mathrm{s})$
e. $2 \mathrm{CO}_{3}^{-}(\mathrm{aq})+\mathrm{Sn}^{+4}(\mathrm{aq}) \rightarrow \mathrm{Sn}\left(\mathrm{CO}_{3}\right)_{2}(\mathrm{~s})$
14. What is the concentration of potassium ions in the solution after the reaction?
a. $\quad 6.0 \mathrm{M}$
b. 3.0 M
c. 2.0 M
d. 1.0 M
e. 0.50 M
15. Which best describes the concentration of carbonate ions in the solution after the reaction?
a. $\quad 0 \mathrm{M}$, because the carbonate ion is the limiting reactant and is completely consumed in forming the precipitate.
b. Between 0 M and 3.00 M , because some of the carbonate ion is used in forming the precipitate, but there is still some leftover.
c. Between 0 M and 3.00 M , because the carbonate is not used in forming the precipitate but the solution has a greater volume after mixing, which decreases the carbonate ion concentration.
d. 3.00 M , because the number of moles of carbonate ions present in the container stays the same throughout the entire reaction.
e. Greater than 3.00 M , because the concentration of carbonate ions present increases as the precipitate forms.

Free Response: Please write your answers in the spaces below.
16. Recall the lab experiment in which you observed several balloons inflating after reacting two different acids with sodium bicarbonate (baking soda). One of the reactions you saw took place below between the baking soda and sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$.

$$
\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{NaHCO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})
$$

a. A balloon holding 1.68 grams of baking soda ($\mathrm{MM}=84.0 \mathrm{~g} / \mathrm{mol}$) is positioned on top of a flask holding sufficient sulfuric acid to react. If this reaction takes place at an external pressure of 1.0 atm and a temperature of $22^{\circ} \mathrm{C}$, what is the volume of the balloon formed after the reaction takes place? Assume the balloon is full of carbon dioxide.
b. After the reaction took place, the flask held some water and aqueous sodium sulfate. It is possible to boil off the water until just solid sodium sulfate remains. How many grams of sodium sulfate would have been present if 1.68 grams baking soda reacted with sufficient sulfuric acid?
c. In a second scenario, $100 . \mathrm{mL}$ of 0.100 M sulfuric acid is placed in a flask. A balloon containing 2.00 grams of baking soda is positioned on top of this flask. The contents of the balloon and flask are mixed and the balloon inflates. Is this balloon the same size, smaller than, or larger than the balloon inflated in part a? Explain.

Please go on to the next page.

17. Nitrogen and hydrogen gases are present in a rigid steel container which react to form ammonia gas $\left(\mathrm{NH}_{3}\right)$. Use the information below to answer the following questions.

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

- Before this chemical reaction took place, about 98.0 grams of nitrogen gas were present along with some mass of hydrogen gas.
- After the chemical reaction has occurred, 51.0 g ammonia plus 56.0 grams of excess reactant (either nitrogen or hydrogen) are present in a rigid container.
a. Identify the limiting reactant, or state that neither reactant is limiting. Circle your selection below and then justify your answer.
Limiting: Nitrogen Hydrogen Neither
b. Determine the mass of hydrogen that was present in the container before the reaction. Show work which clearly displays all steps.
c. This reaction took place in a closed, rigid container with constant temperature and volume. Is the pressure in the container after the reactant greater than, less than, or equal to the pressure in the container before the reaction?

Fill in the blank below with your answer (less than/equal to/greater than) and then explain. Your explanation should include complete mathematical support showing all substances in the container both before and after the reaction.

The pressure in the container after the reaction is the pressure before the reaction.
Periodic Table of the Elements

Chem 101 Scratch Paper

NOTHING WRITTEN ON THIS PAGE WILL BE GRADED

