Remote Aliphatic C-H Oxidation of Nitrogen-Containing Molecules

Kaibo Feng and M. Christina White

Nitrogen is ubiquitous among natural products and pharmaceuticals. Because of its strong Lewis basicity, C—H activation of nitrogen-containing molecules catalyzed by ligated transition metals has been limited in functionalizing sites proximal (i.e., α -, β -, γ -) to nitrogen. We developed an acid protecting strategy, using Brønsted acid HBF4 or Lewis acid BF3 to irreversibly protonate or complex with nitrogen. The complexation prevents metal binding and renders the nitrogen a strong electron-withdrawing group, thus inductively deactivates sites close to nitrogen. In a diverse set of substrates containing amine, pyridine, and various other functionalities, oxidation mediated by Fe(PDP) and Fe(CF3PDP) produced remotely oxidized alcohol or ketone products in preparative yields and good site-selectivity. Imides require no protection and directly promote remote oxidation. Furthermore, this method is capable of functionalizing complex nitrogen-containing molecules at late stage in synthetically useful yields, where the remote site-selectivity can be predicted using a computational model.

Removing Enzymatic Susceptibility of Imidazotetrazine Prodrugs for the Treatment of Glioblastoma

Riley Svec and Paul J. Hergenrother

Glioblastoma (GBM) is the most prevalent and infiltrative primary brain tumor and leads to a median patient survival of less than 15 months. The current standard of care includes temozolomide (TMZ), a prodrug that hydrolyzes at physiological pH and methylates at the O6-position of guanine nucleotides. O6-guanine methylation, however, is diligently repaired by suicide enzyme O6-methylguanine methyltransferase (MGMT), conferring tumoral resistance that is observed in ~55% of the GBM patient population. Our strategy is to develop an imidazotetrazine analog of TMZ that installs a DNA adduct irremovable by MGMT, thus subverting the main mechanism of resistance to TMZ and potentially providing a therapeutic option for all GBM patients irrespective of MGMT expression status.