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The field of chemical sensors is a rapidly growing area [1-10]. Chemical sensors 
themselves, however, have been around since the early 1900's: pH sensors were first reported 
in 1906, and simple pH electrodes have been known since 1935 [10]. The majority of growth 
in the area of sensing technology, though, has come only in the last thirty years. The recent 
growth of chemical sensors has not been a result of instrumental limitations, rather, it has 
been driven by the "fact that the chemica]{mstrument interface (i. e. the sensor) is today more 
commonly the limiting aspect of the chemical analysis capability .. [11]. 

The role of inorganic chemistry in the development of chemical sensors has been 
quite substantial. Metal oxides have been used in numerous chemical sensors and were first 
reported by Seiyama [12]. Tin oxide (Sn(h) was utilized in one of the first commercially 
available gas sensors (Fig. 1) and is still used today. The principle of its operation relies 
upon the fact that Sn(h is a n-type semiconductor. Upon interaction with a reducing gas, the 
resistance of the tin oxide decreases in an amount proportional to the gas concentration. 
Another metal oxide, stabilized zirconia, is used commercially in automobile oxygen sensors 
to maintain a proper air-to-fuel ratio [13]. This is important in terms of improving combus
tion and reducing emissions [14]. The zirconia sensor operates on the principle of ionic (<>2-) 
conduction. A difference in oxygen partial pressures on the inside and outside of the sensor 
produces an electromotive force which can be related to oxygen concentration in the exhaust 
[15]. 

1-1 mm 
1 

1omm 

Figure 1. Figaro Corporation tin oxide gas sensor [13] 

Recently, metal phthalocyanines have been used as sensing elements for several re
dox-active analytes. Metal phthalocyanines are well-suited for use in chemical sensors for a 
variety of reasons. They exhibit high chemical and thermal stability, can be synthesized in 
high yields, and exhibit interesting electrochemical and optical properties. Perhaps, the most 
widely studied chemical sensor containing a phthalocyanine is the lead phthalocyanine 
(PbPc) gas sensor [16,17]. This system has been primarily studied with respect to its interac
tion with nitrogen dioxide. The operating principle of the sensor is analogous to that of Sn02 
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although its response is reversed due to the fact that PbPc is a p-type semiconductor. How
ever, reproducibilty in this system has proved elusive, and, thus, it has not been commercially 
implemented. 

A residual aqueous chlorine sensor has recently been reported which utilized a 
lutetium bisphthalocyanine (LuPc2) thin film as the sensing element [ 18]. The method used 
for the sensor involves coating a planar optical waveguide with the LuPc2 thin film (fig. 2). 
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Figure 2. Schematic of optical waveguide (18] 

The sensing principle of this system utilized the change in the LuPc2 absorption spectrum 
upon oxidation by chlorine from LuPc2+ to LuPc22+. The magnitude of the change produced 
in the spectrum can be related to the chlorine concentration of a sample. 

Another recent article reported the use of cobalt phthalocyanine (CoPc) immobilized 
in a screen-printed carbon electrode as an amperometric sensor for the biologically important 
molecule glutathione [19]. CoPc was employed because it has been shown to reduce the 
overpotential for glutathione oxidation [20]. The reduction in overpotential and the use of 
glutathione peroxidase (which catalyzes the oxidation of glutathione in the body) conferred 
selectivity to the technique. 

A third class of inorganic compounds which has been used as chemical sensors in
cludes luminescent ruthenium and platinum pyridyl compounds. These compounds are of 
interest as oxygen sensors due to the quenching effect that oxygen has on their emission in
tensity. Inorganic luminescent compounds are superior to their organic counterparts due to 
greater stability, longer excited-state lifetimes, and larger Stokes shifts (21, 22]. 

A recent example of this type of sensor incorporated [Ru(bipy)3]2+ and 
[Ru(ph2phen)3]2+ (bipy = 2,2'-bypiridine; ph2phen = 4,7-diphenyl-1,10-phenanthroline) in a 
silica gel prepared by the sol-gel process [23]. The 02 sensor was constructed by coating a 
declad optical fiber with this doped silica gel. A greater response to oxygen was observed 
with [Ru(phwhen)3]2+. and the oxygen sensitivity of the probe was enhanced by varying the 
pH used in the sol-gel process. 

Compounds of the type Pt(CN)2(L) (L = 4,7-diphenyl-1,10-phenanthroline; 4,4'-di-t
butyl-2,2'-bypiridine) have also been used as oxygen sensors [22]. These compounds were 
incorporated into a silicone polymer. These compounds exhibit greater sensitivity to oxygen 
than did the ruthenium complexes. The platinum complexes also displayed excimer emission 
with the location of the emission maximum dependent on the silicone microenvironment. 
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A complication in the implementation of these devices has been the fact that the exci
tation light source has traditionally been rather bulky. A recent article has described an all
solid-state device utilizing [Ru(bipy)3]2+ as the luminescent complex [24]. The excitation 
source in this device is a new type of high-intensity blue light-emitting diode (LED). Blue 
LED's have traditionally been hard to produce, and those that have been used in sensors have 
suffered from low output intensity. Using this new diode, a significantly smaller oxygen sen
sor was designed and tested successfully. 
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