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The photochemistry and photophysics of transition metal coordination complexes can 
be greatly modified by incorporation into rigid hosts such as zeolites, clays, and layered inor­
ganic solids. The microenvironment of the host can prevent decomposition processes and 
can promote photon-induced vectorial electron transfer [1-4). Much of the recent interest in 
photochemically-active transition metal complexes in organized media is directed towards 
photoinduced water splitting. A high quantum yield for the production of charge-separated 
species necessary for H20 cleavage can be achieved through compartmentalization of the 
highly energetic photoproducts. 

Excitation of electron donor-acceptor pairs entrapped in zeolite supercages generates 
much longer-lived charge separated states since the highly reactive photoproducts are con­
strained with respect to diffusion. The synthesis of zeolite-entrap~ed [Ru(bpy)JJ2+ can be 
accomplished first by impregnation of zeolite-Y with [Ru(NH3)6] +followed by addition of 
excess bipyridine [5,6J. Migration of the 1 lA diameter [Ru(bpy)3]2+ ions through the 7A di­
ameter intrazeolitic windows is not possible, thus preventing diffusional deactivation of ex­
cited [Ru(bpyh]2+ via self-quenching. 

If a mixture of [Ru(bpyhJ2+ and diquat (DQ2+) is entrapped in a zeollite-Y host, and 
the zeolite particles are suspended in a solution containing proplyviologensulfonate(PVS), 
very long-lived charge-separation can be achieved. Electron transfer from the triplet state of 
[Ru(bpy)3]2+ to diquat, in neighboring supercages, occurs upon photoexcitation [7]. The 
shuttling of electrons to the zeolite-solution interface is thought to occur through a "hopping" 
mechanism where electrons are carried from DQ2+ to DQ2+ and eventually to propylviolo­
gensulfonate in solution [8]. Excited [Ru(bpy)J]2+ is capable of reducing viologens, which in 
turn are known to reduce water to H2 in the presence of a Pt catalyst [9]. 
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Charge recombination is entirely eliminated as a consequence of the repulsion be­
tween reduced ~ropylviologensulfonate and the anionic zeolite cage. Early work using Si02 
and [Ru(bpy)J] +also exhibited efficient charge-separation resulting from relay/matrix 
charge repulsion [ 10]. 
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Another way zeolites can promote long-lived charge-separation is by immobilizing 
electron accepting groups bound to ruthenium centers within zeolite-L channels [11]. In this 
arrangement, the photooxidized ruthenium avoids reduction as a consequence of restricted 
motion of the reduced acceptor. Further charge-separated stabilization is possible with in­
corporation of benzylviologen into the zeolite channels, which takes the electton to more 
positive potentials and increases the lifetime by a factor of 80 [12]. 

Luminescent guest molecules such as [Ru(bpy )3]2+ can yield imponant information 
about the microenvironment of the host and about neighboring molecule interactions [ 13]. 
MLCT bands and concomitant room temperature triplet-state emission [14,15] provide a 
means for monitoring electron transfer processes and host microenvironmental effects. 

The arrangement of [Ru(bpy)J]2+ ions loaded into a synthetic clay analogue, fluorte­
trasilicic mica, can be determined by monitoring emission intensity. [Ru(bpy)3]2+ in fluone­
trasilicic mica doped with poly(vinylpyrrolidone) shows relative luminescence intensities that 
are 6 times greater than emission from [Ru(bpy)J]2+ in undoped fluortetrasilicic mica at low 
loading levels [ 16, 17]. These clay analogues lack iron [ 18, 19] which effectively quenches 
excited Ru[(bpy)3]2+. A comparison of the relative luminescence intensit~ of both polymer­
doped and polymer-free layered surfaces reflect segregation of [Ru(bpy})] +and suggests 
that the poly(vinylpyrrolidone) is rigid. 

In conclusion, rigid assemblies facilitate the formation of charge-separated photo­
products, which is a prerequisite for efficient water cleavage. Reliable electron-transfer and 
luminescence studies become possible when the orientation and position of [Ru(bpy)3]2+ in 
the host is known. 
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