Reactions of Dichalcogenide and Substituted Dichalcogenide Ligands of Molecular and Nonmolecular Compounds

John E. Hoots

Final Seminar

October 20, 1983

Recently interest in side-bonding or η^2 -ligands which contain chalcogens (0, S, Se) is accelerating with a wide variety of organic and inorganic systems being studied [1-3]. Three recent examples of significant work with the η^2 -ligands have involved formation of an η^2 -acetyl ligand by reversible CO insertion into a Zr-CH₃ bond [4], step-wise reduction of a thiocarbonyl ligand to CH₃SH via an η^2 thioformyl intermediate [5], and X α -calculations probing the nature of bonding in η^2 -E₂ complexes (E = 0, S, Se) [6].

The formation of octahedral $[Ir(\eta^2-E_2)(dppe)_2]^+$ (E = S, Se and dppe = Ph2PCH2CH2PPh2) complexes is generally accomplished by "oxidative-addition" of pure chalcogens (S₈ or Se₈) to $[Ir(dppe)_2]^+$ [7]. Chalcogen transfer from $(MeCp)_2 TiE_5$ (E = S, Se) permitted similar conversions with a unique metalloheterocycle, 1,4-[(MeCp)2Ti]2S4, co-produced with the Ir-S₂ complex. In the formation of the Ir-Se₂ compound, a significant rate enhancement (x 1000) was noted, as compared to the Se₈ method. The $Ir-S_2$ and $-Se_2$ complexes reacted with potent electrophiles such as CH_3SO_3F and CF_3SO_3H to form $[Ir(\eta^2 E_2 R$ (dppe)₂]²⁺ (R = CH₃, H and E = S, Se) [8]. The pyramidal nature of the alkylated chalcogen atom was demonstrated by the observation of resonances fordiastereomeric complexes in the 360 MHz ¹H NMR spectra. The η^2 -S₂CH₃ complex is very reactive toward nucleophiles (CH3NC, CN, and PPh3) and a variety of reaction pathways have been elucidated. In particular, the reaction involving CH3NC was shown to involve at least two steps (eq. 1) and serves as a model for the Oxirane olefin expoxidation process (eq. 2) [9].

The use of organoperacids permitted rapid, clean oxidations of the Ir-S₂ and Se₂ complexes to the corresponding $\eta^2 - S_20$, S_20_2 , and Se₂O compounds. Similarly, oxidation of Cp₂Nb($\eta^2 - S_2$)Cl produced an $\eta^2 - S_20$ unit. Peracids were also used to effect the facile conversion of $\mu_3 - S$ to $\mu_3 - SO$ ligands in the syntheses of Fe₃(CO)(S)(CO)₉ and Fe₂Pt(SO)(S)(CO)₆(PPh₃)₂, which represent the only sulfurmonoxide complexes presently known [10]. Only the triiron complex has been previously reported and was a by-product from the synthesis of Fe₃(S)₂(CO)₉ [11]. Reactivity studies on the E₂O, S₂O₂ and SO ligands indicated transfer of the exocyclic oxygen atom to be very

difficult in sulfur-based systems but relatively facile for the n²-Se₂O ligand.

Attempted syntheses of complexes containing the elusive η^2 -EO (E=S,Se) ligands by abstraction of the unsubstituted chalcogen in the $\eta^2 - E_2O$ groups were not successful. However, the analogous and previously unknown η^2 -SeS ligand was synthesized with [Ir(dppe)₂]⁺ and the chalcogen-transfer reagent, $Cp_2TiS_XSe_{5-X}$ (x=2). A stabilized form of the SO unit, the O-methyl thioperoxide ligand, was observed in $[Ir(\eta^1-SOCH_3)(CH_3NC)(dppe)_2]^{2+}$ and was synthesized from the η^2-S_2O complex by O-alkylation, followed by abstraction of the unsubstituted sulfur atom with CH₃NC (eq. 3).

The appearance of high-field shifted ortho-phenyl resonance(s) for all cis-[Ir(X)(Y)(dppe)₂]ⁿ⁺ complexes [12] is particularly distinctive. A new theory based on mutual shielding effects of the aromatic rings is proposed from solution and solid-state structural studies of the cis-iridium complexes.

The research on monomeric η^2 -dichalcogenide complexes has been extended to desulfurization of solid-state, extended-lattice metal sulfides, particularly pyrite (FeS2). The formation of pollutants, such SO2, from the decomposition of pyrite has remained a major barrier to increased use of coal as a fuel source. We found that pyrite is desulfurized at ~260°C with $(n-C_4H_9)_3P$ to an equilibrium mixture of FeS and Fe0,95S (pyrrhotite), as determined by x-ray powder diffraction and Mössbauer spectroscopy [13,14]. The phosphine desulfurization reaction was successfully applied to a sample of Illinois coal (1.9% FeS2) with x-ray powder diffraction revealing complete conversion of pyrite to pyrrhotite. Also, partial desulfurization of a spectrum of metal sulfides (MoS_3 , CoS_2 , and Cu_2S) was successful. Addition of a sulfur-receptor, such as metallic iron, created a catalytic cycle (shown below) with 40 turnovers/hour observed for an 100:1 ratio of FeS₂ to (n-C₄H₉)₃P at ~300°C. The desulfurization of FeS2 with Fe under a CO atmosphere at 400°C indicated other catalytic cycles, such as the CO-COS couple [15,16], may exist and be potentially useful in future coal desulfurization processes.

(3)

References

- 1. Müller, A.; Jaegermann, W.; Enemark, J. H. <u>Coord. Chem. Rev.</u> <u>1982</u>, <u>46</u>, 245.
- 2. Ibers, J. A. Chem. Soc. Rev. 1982, 11, 57.
- Fachinetti, G.; Floriani, C.; Chiesi-Villa, A.; Guastini, C.
 J. Chem. Soc., Dalton Trans. 1979, 1612.
- 4. Calderazzo, F. Angew. Chem., Int. Ed. Engl. 1977, 16, 299.
- 5. Collins, T. J.; Roper, W. R. J. Organomet. Chem. 1978, 159, 73.
- Ginsberg, A. P.; Osborne, J. H.; Sprinkle, C. R. Inorg. Chem. 1983, 22, 254.
- Ginsberg, A. P.; Lindsell, W. E.; Sprinkle, C. R.; West, K. W.; Cohen, R. L. Inorg. Chem. 1982, 21, 3666.
- Only the S₂CH₃ complex has been synthesized previously. Plute, L. K.; Haltiwanger, R. C.; Dubois, M. R. <u>Inorg. Chem.</u> <u>1979</u>, <u>18</u>, 3246.
- Sheldon, R. A.; Kochi, J. K. "Metal-Catalyzed Oxidations of Organic Compounds," Academic Press: New York, 1981, pp. 56-62.
- 10. Lesch, D. A. Ph.D. Thesis, University of Illinois, 1983.
- 11. Markó, L.; Markó-Monostory, B.; Madach, T.; Vahrenkamp, H. Angew. Chem., Int. Ed. Engl. 1980, 19, 226.
- 12. Ginsberg, A. P.; Lindsell, W. E. Inorg. Chem. 1973, 12, 1983.
- Vaughan, D. J.; Craig, J. R. "Mineral Chemistry of Metal Sulfides," Cambridge University Press: New York, 1978, Chapter 8, pp. 279-280.
- 14. Montano, P. A. Adv. Chem. Ser. 1981, 194, 137-175.
- Hadjisavas, P.; Caillet, M.; Galerie, A.; Besson, J. J. Electrochem. Soc. 1980, 127, 569.
- Smith, G. V.; Hinckley, C. C.; Zahraa, O.; Nishizawa, T.; Saporoschenko, M.; Shiley, R. H. J. Catalysis 1982, 78, 262.

1