Eric J. Houser

Final Seminar

November 4, 1993

3 x Ru-Ru bonds of 2.79 Å 3 x Ru-Ru contacts of 3.50 Å

Dynamic ligand processes are frequently observed in transition metal cluster chemistry [1]. If the ligand dynamics effect changes in formal electron counts at the metal cluster atom sites then metal-metal bond movements may be expected. Examples of reversible metal-metal bond cleavage are known to be driven by ligand migration [2a], geometrical isomerization [2b], and other ligand-centered processes. Rare are examples of metal-metal bond mobility in the absence of ligand dynamic processes [2]. Ideal candidates for such studies are metal clusters which do not have fully bonded metal frameworks; in these cases bond/no bond equilibria might be anticipated. The electron rich clusters of the type $(MeC_5H_4)_4Ru_4E_4$ (E = S, Se, Te) are ideal candidates for studying this effect.

This situation is observed in $(MeC_5H_4)_4Ru_4S_4(TCNQ)_2$ where the cluster dication is chiral by virtue of three localized Ru-Ru bonds [3]. In this mixed valence cluster, the Ru(III) sites have one Ru-Ru bond while the Ru(IV) sites have two Ru-Ru bonds (Figure 1).

2 +

Figure 1. Idealized structure of the Ru_4S_4 core in $(MeC_5H_4)_4Ru_4S_4^{2+}$ (MeC₅H₄ ligands omitted for clarity)

In this work I examined diamagnetic salts of $(MeC_5H_4)_4Ru_4S_4^{2+}$, obtained by chemical oxidation of $(MeC_5H_4)_4Ru_4S_4$ as shown in equation 1.

$$2 [Cp_2Fe]PF_6 + (MeC_5H_4)_4Ru_4S_4 \longrightarrow (MeC_5H_4)_4Ru_4S_4(PF_6)_2 + 2 Cp_2Fe$$
(1)

The 500 MHz ¹H NMR spectrum of $(MeC_5H_4)_4Ru_4S_4(PF_6)_2$ at temperatures above 20 °C shows a single broad resonance assigned to $CH_3C_5H_4$ and two broad resonances assigned to $CH_3C_5H_4$. These resonances sharpen at higher temperatures while one observes two $CH_3C_5H_4$ resonances and eight $CH_3C_5H_4$ resonances at -43 °C (Figure 2). The low temperature pattern is consistent with a chiral cluster as observed in the solid state structure of the $TCNQ^-$ salt. Similar dynamic behavior is observed for $(MeC_5H_4)_4Ru_4Se_4(PF_6)_2$, while $(MeC_5H_4)_4Ru_4Te_4(PF_6)_2$ shows only slight line broadening at -40 °C. The dynamics were further tested through two sets of control experiments. First, the insensitivity of the coalescence temperature (T_c) to concentration showed the dynamics to be *intramolecular*. Second, the energetics of the dynamic behavior is not influenced by steric interactions between the RC_5H_4 ligands. The activation parameters were evaluated from the coalescence temperatures and lineshape analyses.

Figure 2. Variable Temperature ¹H NMR spectra (500 MHz) of $(MeC_5H_4)_4Ru_4S_4(PF_6)_2$ in CD₃CN (* = CD₂HCN).

The fluxional behavior of $(MeC_5H_4)_4Ru_4E_4(PF_6)_2$ (E = S, Se) can be attributed to a dynamic process involving rapid movement of one Ru-Ru bond within the cluster framework or the formation of an intermediate (or transition state) with various degrees of Ru-Ru bond delocalization (eq. 2).

The mechanism of these dynamics was further studied with the S-methylated clusters $[(MeC_5H_4)_4Ru_4S_3(SCH_3)]CF_3SO_3$ and $[(MeC_5H_4)_4Ru_4S_3(SCH_3)](PF_6)_2CF_3SO_3$. The ¹H NMR spectrum of [(MeC₅H₄)₄Ru₄S₃(SCH₃)]CF₃SO₃ at 20 °C in the methyl region shows a 1:2:1 intensity pattern $CH_3C_5H_4$, consistent with its solid state structure. As the temperature is increased, two of these resonances (1:2 intensity ratio) broaden and begin to coalesce. This experiment shows (i) that the M-M bonds can be dynamic even when nonadjacent, (ii) in these situations the barrier is higher than when the M-M bonds are adjacent, and (iii) that metal-metal bond dynamics are not necessarily a consequence of mixed valency (all sites are RuIII). In contrast, the limiting ¹H NMR spectrum (500 MHz) of the mixed valence cluster [(MeC₅H₄)₄Ru₄S₃(SCH₃)](PF₆₎₂CF₃SO₃ shows four CH₃C₅H₄ signals and sixteen (two overlapping) CH₃C₅ H_4 signals. As the temperature is increased, the CH₃C₅ H_4 signals and three of the $CH_3C_5H_4$ signals broaden and merge to give four (two overlapping) $CH_3C_5H_4$ in a 1:1:3:3 and two CH₃C₅H₄ signals in a 3:1 intensity ratio. A lineshape fitting of the variable temperature ¹H NMR spectra for [(MeC₅H₄)₄Ru₄S₃(SCH₃)]³⁺ required three rate constants to model the spectra. This experiment establishes that the dynamics do not involve a "simple" delocalized intermediate.

Parallel with the above work we examined dynamics in $(C_5Me_5)_4Ru_4S_4^{2+}$. This species exhibits a simple NMR spectra, even low temperatures. In related studies, salts of $(C_5Me_5)_3Ru_3S_4^+$ were obtained from the reaction of $(C_5Me_5)Ru(CH_3CN)_3^+$ with $(C_5Me_5)_2$ - Ru_2S_4 [5]. The 500 MHz ¹H and ¹³C{¹H} NMR spectra indicate equivalent C₅Me₅ rings although crystallographic studies revealed an unsymmetrical structure (eq. 2), so here it is again necessary to involve dynamic Ru-Ru bonds. This species exhibits a new bonding mode for a persulfide ligand and a new structural motif for M₃S₄ clusters. Furthermore, this cluster cation is reactive towards electrophiles (SO₂, H⁺, Me⁺, Et⁺), apparently via additions to the μ_3 , η^5 -S₂ ligand. ¹H NMR spectra of (C₅Me₅)₃Ru₃S₃(SR)²⁺ (R = Me, Et) show a 2:1 intensity pattern showing that additions to the S-centers inhibits the Ru-Ru bond motion. Struc-tural studies on (C₅Me₅)₃Ru₃S₃(SEt)²⁺ and (C₅Me₅)₃Ru₃S₃(S₂O₂)⁺ show that the core structure and orientation of the addend are similar.

References

- 1. For a review on dynamic processes in transition metal clusters see: Kharas, K. C. C.; Dahl, L. F. Adv. Chem. Phys. 1988, 70 (pt. 2), 1.
- (a) Adams, R. D.; Collins, D. E.; Cotton, F. A. J. Am. Chem. Soc. 1974, 96, 749.
 (b) Carmona, D.; Ferrer, J.; Mendoza, A.; Lahoz, F. J.; Reyes, J.; Oro, L. A.

Angew. Chem., Int. Ed. Engl. 1991, 30, 1771.
(c) Jones, R. A.; Wright, T. C.; Atwood, J. L.; Hunter, W. E. Organometallics 1983, 2, 470.
(d) Bailey, D. A.; Balch, A. L.; Fossett, A.; Olmstead, M. M.; Reedy, Jr., P. E. Inorg. Chem. 1987, 26, 2413.
(e) Chisholm, M. H.; Clark, D. L.; Hampden-Smith, M. J. J. Am. Chem. Soc. 1989, 111, 574.
(f) Kubas, G. J.; Vergamini, P. J. Inorg. Chem. 1981, 20, 2667.

(g) Brown, C.; Heaton, B. T.; Chini, P.; Fumagalli, A.; Longoni, G. J. C. S., Chem. Commun. 1977, 309.

- Amarasekera, J.; Rauchfuss, T. B.; Wilson, S. R. J. Chem. Soc., Chem. Commun. 1989, 14. Amarasekera, J.; Houser, E. J.; Rauchfuss, T. B.; Wilson, S. R. Inorg. Chem. 1992, 31, 1614.
- 4. Houser, E. J.; Amarasekara, J. A.; Rauchfuss, T. B. J. Am. Chem. Soc. 1991, 113, 7440. Houser, E. J.; Rauchfuss, T. B.; Wilson, S. R. Inorg. Chem. 1993, 32, 4069.
- Rauchfuss, T. B.; Rodgers, D. P. S.; Wilson, S. R. J. Am. Chem. Soc. 1986, 108, 3114. Houser, E. J.; Dev, S.; Ogilvy, A. E.; Rauchfuss, T. B.; Wilson, S. R. Organometallics 1993, 12, 0000.
- 6. Houser, E. J.; Krautscheid, H.; Rauchfuss, T. B.; Wilson, S. R. submitted for publication.