Black Spots on a Cluster Face: Synthesis and Characterization of Ru₃(CO)₉(μ₃-η²,η²,η²-C₆₀), Ru₃(CO)₉(μ₃-η²,η²,η²-C₇₀), and Related Face-Capped Derivatives

Hsiu-Fu Hsu

Final Seminar

September 17, 1997

Fullerenes were discovered by Smalley et al. in 1985.¹ Subsequently, the macroscopic synthesis² of the two most abundant fullerenes, C₆₀ and C₇₀, initiated the development of the organometallic chemistry of fullerenes. Early approaches to forming metal complexes were based on the view dating to the original report on C₆₀ that the molecule was highly aromatic.¹ However, well-known arene-coordinating reagents failed to form the expected η^{6} -C₆₀ derivatives, and these notions were swept aside by the synthesis and structural determination of Pt(PPh₃)₂(η^{2} -C₆₀).³ Subsequent metal π -complex chemistry⁴ has reinforced the idea that C₆₀ reacts primarily as a moderately electronegative olefin. However, fullerene complexes with tetrahapto coordination of adjacent π bonds to two connected metal centers have been reported.⁵ The failure to form stable M(η^{6} -C₆₀) compounds has been attributed to the bending away (10°)⁶ of the p π -orbitals of the six-membered ring from the perpendicular to the face of the ring; both calculations and experiment indicate that C₆₀ is a weaker ligand than benzene toward a single metal. However, benzene and related arenes can also bond to triangular faces of metal clusters, and geometric considerations suggest that a metal triangle should provide for effective overlap with the C₆₀ p π orbitals.

After many attempts, conditions were found under which the reaction of $Ru_3(CO)_{12}$ with C₆₀ gave the novel hexahapto C₆₀ compound, $Ru_3(CO)_9(\mu_3-\eta^2,\eta^2,\eta^2-C_{60})$ (Figure 1).⁷ The molecular structure of $Ru_3(CO)_9(\mu_3-\eta^2,\eta^2,\eta^2-C_{60})$ shows that the Ru₃ triangle is positioned centrally over a ring of six carbons in the fullerene framework, and the two planes are essentially parallel. The carbon-carbon bonds in the six-membered ring alternate in length and the Ru-C distances also show a short-long pattern at each metal center, which reflects a slight twist about the idealized threefold axis linking the Ru₃ triangle and the C₆ ring. The structural features seen for Ru₃(CO)₉($\mu_3-\eta^2,\eta^2,\eta^2-C_{60}$) are closely comparable to those reported for the benzene complex Ru₃(CO)₉($\mu_3-\eta^2,\eta^2,\eta^2-C_{61}$).⁸

Figure 1. A perspective view of $Ru_3(CO)_9(\mu_3-\eta^2,\eta^2,\eta^2-C_{60})$.

18

 $2:n^{2}$

The stability of Ru₃(CO)₉(μ_3 - η^2 , η^2 , η^2 -C₆₀) toward elevated temperatures (> 130 °C) and CO pressures (ca. 4 atm) indicates strong interaction between the Ru₃ triangle and the C₆ ring. The carbonyl ligands can be replaced by triphenylphosphine ligands to give Ru₃(CO)_{9-n}(PPh₃)_n(μ_3 - η^2 , η^2 , η^2 -C₆₀) (n = 1, 2), and the C₆₀-Ru₃ cluster interaction is interrupted by extended heating of these phosphine derivatives, which leads to the formation of mononuclear complexes. Detailed ³¹P and ¹³C NMR studies on the Ru₃(CO)_{9-n}(PPh₃)_n(μ_3 - η^2 , η^2 , η^2 -C₆₀) derivatives indicate localized ligand rotation at each metal center.

The multiple addition adducts, $\{Ru_3(CO)_9\}_n(\mu_3-\eta^2, \eta^2, \eta^2-C_{60})$ (n = 2, 3, 4), were obtained by raising the ratio of $Ru_3(CO)_{12}$ to C_{60} . One of two isomers of the 3:1 adduct has been structurally defined (Figure 2). The steric availability of further reacting sites seems to be the dominant factor in determining the isomer distribution with this special bonding mode.

Figure 2. A perspective view of $\{Ru_3(CO)_9\}_3(\mu_3-\eta^2,\eta^2,\eta^2-C_{60})$.

The first hexahapto complex of C₇₀, Ru₃(CO)₉(μ_3 - η^2 , η^2 , η^2 -C₇₀), has been prepared and structurally defined (Figure 3).⁹ The Ru₃ triangle is bonded to a six-membered ring next to one of the poles of C₇₀. In addition, the expected three isomers of the double substitution product, {Ru₃(CO)₉}₂(μ_3 - η^2 , η^2 , η^2 -C₇₀), were also obtained and separated, and the structure of one isomer has been determined. The two Ru₃ units are each bonded to six-membered rings but adjacent to opposite poles of the ellipsoidal C₇₀ unit.

Figure 3. A perspective view of $Ru_3(CO)_9(\mu_3-\eta^2,\eta^2,\eta^2-C_{70})$.

20

CO The n(µ3ating

es

as to be

ed ext to

are of gs but

The phosphine derivatives of Ru₃(CO)₉(μ_3 - η^2 , η^2 , η^2 -C₇₀) were prepared and studied by ³¹P and ¹³C NMR spectroscopy. For the monophosphine derivative, Ru₃(CO)₈(PPh₃)(μ_3 - η^2 , η^2 , η^2 -C₇₀), two isomers are observed in the ³¹P{¹H} NMR spectrum at room temperature and no evidence for rotation of C₇₀ versus the Ru₃ triangle is observed up to 60 °C. However, in the parent compound, Ru₃(CO)₉(μ_3 - η^2 , η^2 , η^2 -C₇₀), the two carbonyl signals due to axial and equatorial carbonyl ligands coalesce at 95 °C, which can be attributed possibly to rotation or to a scrambling process equilibrating all the carbonyl ligands.

The reaction of Ru₆C(CO)₁₇ with C₆₀ followed by carbonyl substitution with bis(diphenylphosphino)methane gave Ru₆C(CO)₁₂(dppm)(μ_3 - η^2 , η^2 , η^2 -C₆₀), in which the C₆₀ ligand occupies one face of the octahedral Ru₆ unit (Figure 4).¹⁰ The dppm ligand bridges two Ru atoms not bonded to C₆₀.

Figure 4. A perspective view of $Ru_6C(CO)_{12}(dppm)(\mu_3-\eta^2, \eta^2, \eta^2-C_{60})$.

Although two possible bonding modes were observed in mono-arene Ru₆C complexes,¹¹ it is found that the C₆₀ coordinates to a ruthenium triangle face of Ru₆C framework.

References

- 1. Kroto, H. W.; Heath, J. R.; O'Brien, S. C.; Smalley, R. E. Nature 1985, 318, 162-163.
- 2. Krätschmer, W.; Lamb, L. D.; Fostiropoulos, K.; Huffman, D. R. Nature 1990, 347, 354-358.
- 3. Fagan, P. J.; Calabrese, J. C.; Malone, B. Science 1991, 252, 1160-1161.
- (a) Fagan, P. J.; Calabrese, J. C.; Malone, B. Acc. Chem. Res. 1992, 25, 134-142.
 (b) Balch, A. L.; Olmstead, M. M. Chem. Rev. 1997, submitted.
- (a) Rasinkangas, M.; Pakkanen, T. T.; Pakkanen, T. A.; Ahlgren, M.; Rouvinen, J. J. Am. Chem. Soc. 1993, 115, 4901-4902. (b) Mavunkal, I. J.; Chi, Y.; Peng, S.-M.; Lee, G. H. Organometallics 1995, 14, 4454-4456.
- 6. (a) Haddon, R. C. Acc. Chem. Res. 1988, 21, 243-249. (b) Haddon, R. C. Science 1993, 261, 1545-1550.

- 7. Hsu, H.-F.; Shapley, J. R. J. Am. Chem. Soc. 1996, 118, 9192-9193.
- 8. Braga, D.; Grepioni, F. Organometallics 1991, 10, 1260-1268.
- 9. Hsu, H.-F.; Wilson, S. R.; Shapley, J. R. Chem. Commun. 1997, 1125-1126.
- 10. Lee, K.; Hsu, H.-F.; Shapley, J. R. Organometallics 1997, 18, 3876-3877.
- 11. Braga, D.; Dyson, P. J.; Grepioni, F.; Johnson, B. F. G. Chem. Rev. 1994, 94, 1585-1620.

1