## **Chemical and Electrical Properties of Zirconia on Silicon**

Jason Lee

**Final Seminar** 

April 12, 2002

Advances in computer technology have been realized by continuous miniaturization of transistors, diodes, resistors, and capacitors on integrated circuits.<sup>1,2</sup> Decreasing dimensions make it possible to operate integrated circuits at higher speeds at constant power per unit area. As a result, the number of transistors per integrated circuit has roughly doubled every 18 months from the introduction of Intel's 4004 processor in 1971 with 2,250 transistors to Intel's Pentium 4 processor in 2000 with approximately 42,000,000 transistors.<sup>3</sup> However, as the dimensions of the transistor continue to decrease, problems arise due to physical limitations since individual components must also scale accordingly.<sup>4</sup> One component that poses serious scaling problems is the gate insulator which is used to maintain capacitance between the gate electrode and silicon channel. While  $SiO_2$  has been the material of choice for the gate insulator because it readily forms on the silicon substrate by oxidation,<sup>5</sup> SiO<sub>2</sub> gate insulator thickness cannot be reduced to less than about 0.8 nm due to excessive leakage currents.<sup>6</sup> In future generation Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) devices, capacitance (C) will be maintained with smaller gate insulator area (A) according to the relationship,  $C = \kappa \epsilon_0 A/t$ , by increasing the value of the dielectric constant ( $\kappa$ ) with an alternative gate insulator material to keep thickness (t) above 0.8 nm and minimize leakage current. The permittivity of free space ( $\varepsilon_0$ ) is 8.85×10<sup>-14</sup> F/cm.

There are a wide range of candidates for replacement gate insulators,<sup>7</sup> but ZrO<sub>2</sub> is one of the few high- $\kappa$  materials that has proved to be compatible with silicon. For example, deposition of ZrO<sub>2</sub> films on Si by reactive sputtering yields insulating films displaying an equivalent oxide thickness of less than 11 Å and leakage currents less than  $1.9 \times 10^{-3}$  A/cm<sup>2.8</sup> Many other high- $\kappa$  materials such as Ta<sub>2</sub>O<sub>5</sub> and TiO<sub>2</sub> are believed to oxidize Si upon annealing to form SiO<sub>2</sub> and reduced oxides and/or silicates.<sup>7,9</sup> These materials form separate phases that adversely affect dielectric properties.<sup>7,9</sup> In contrast, ZrO<sub>2</sub> does not react with Si at temperatures less than 900 °C.<sup>10</sup>

Atomic layer deposition (ALD) has found widespread application for the vapor deposition of  $ZrO_2$  on silicon for gate oxide applications. This process involves the use of chemical vapor deposition in a series of alternating surface-saturating reactions. Surface hydroxyl groups provide initial sites for condensation. The reaction between  $ZrX_4$ , where X is Cl,<sup>10-13</sup> OBu<sup>t</sup>,<sup>14</sup> or OCH<sub>2</sub>C(CH<sub>3</sub>)<sub>3</sub>,<sup>15</sup> and the hydroxyl groups on the surface yield a single layer of adsorbed  $-OZrX_3$  according to Equation 1.

$$\Box OH_{st} + ZrX_4 \longrightarrow \Box O-ZrX_3 + HX \qquad 1$$

The adsorbed layer is "protected" from multilayer formation by the remaining unreacted X groups. The adsorbed  $-OZrX_3$  species is then "deprotected" by hydrolysis according to Equation 2.

$$\int -ZrX_3 + 3H_2O \longrightarrow \int O-Zr(OH)_3 + 3HX = 2$$

A second exposure to  $ZrX_4$  results in further surface condensation as in Equation 1. Through repeated condensation-hydrolysis cycling, a robust zirconia film is formed layer by layer.

Ultrathin films of zirconia were grown on Si(111) substrates using ALD. However, instead of using a conventional precursor for vapor deposition, chemical solutions containing  $Zr_4(OPr^n)_{16}$  in methylcyclohexane were employed. In previous work, regular growth using  $Zr(OPr^n)_4$  in a 1:1 toluene:propanol solution was observed on surface-activated gold substrates but only at low temperatures.<sup>16</sup> While most precursors for the deposition of ZrO<sub>2</sub> are single metal-center complexes, a precursor with multiple metal centers arranged in a metal-oxide framework analogous to ZrO<sub>2</sub> might result in a more efficient film deposition process. Through the repeated cycling using  $Zr_4(OPr^n)_{16}$ in methylcyclohexane and  $H_2O$  in *n*-propanol, a zirconia film was deposited at a rate of  $9.7 \times 10^{13}$  to  $1.7 \times 10^{14}$  Zr atoms/cm<sup>2</sup> per cycle. These films were chemically and physically characterized using Rutherford backscattering spectrometry, X-ray photoelectron spectroscopy, and transmission electron microscopy. Metal-insulatorsemiconductor capacitors were fabricated using zirconia films on p-Si with an Au top electrode and Au backside ohmic contact. Figures 1 and 2 are current-voltage (I-V) and capacitance-voltage (C-V) curves, respectively. Preliminary results show that these zirconia films have a leakage current density at -1 V in the range of 10<sup>-3</sup> to 10<sup>-4</sup> Amps/cm<sup>2</sup> and equivalent  $SiO_2$  thicknesses below 2 nm.



To reduce the number of reaction cycles and therefore improve the quality of zirconia films, a robust polynuclear zirconate precursor would offer advantages relative to  $Zr_4(OPr^n)_{16}$ . The triskaidecazirconate  $[Zr_{13}O_8](OH)_{12}(OPr^n)_{24}$  has a metal-oxide framework analogous to that of crystalline  $ZrO_2$ , and its application as a precursor to thin film growth will be examined in the near future.

## References

- (1) Streetman, B. G. Solid State Electronic Devices; 4th ed.; Prentice Hall: Englewood Cliffs, New Jersey, 1995; p 331-334.
- (2) Moore, G. E. *Electronics* **1965**, *38*, 114.
- (3) Moore's Law. http://www.intel.com/research/silicon/mooreslaw.htm (accessed April 2002).
- (4) Thompson, S.; Packan, P.; Bohr, M. Intel Tech. J. 1998, Q3, 1.
- (5) Campbell, S. A. *The Science and Engineering of Microelectronic Fabrication*; Oxford University: New York, 1996; p 68-97.
- (6) Kingon, A. I.; Maria, J.-P.; Streiffer, S. K. Nature 2000, 406, 1032.
- (7) Wilk, G. D.; Wallace, R. M.; Anthony, J. M. J. Appl. Phys. 2001, 89, 5243.
- (8) Qi, W.-J.; Nieh, R.; Lee, B. H.; Kang, L.; Jeon, Y.; Lee, J. C. Appl. Phys. Lett. 2000, 77, 3269.
- (9) Wallace, R. M.; Wilk, G. MRS Bulletin 2002, 27, 192.
- (10) Copel, M.; Gribelyuk, M.; Gusev, E. Appl. Phys. Lett. 2000, 76, 436.
- (11) Ritala, M.; Leskela, M. Appl. Surf. Sci. 1994, 75, 333.
- (12) Perkins, C. M.; Triplett, B. B.; McIntyre, P. C.; Saraswat, K. C.; Haukka, S.; Tuominen, M. Appl. Phys. Lett. 2001, 78, 2357.
- (13) Houssa, M.; Naili, M.; Zhao, C.; Bender, H.; Heyns, M. M.; Stesmans, A. Semicond. Sci. Technol. 2001, 16, 31.
- (14) Kukli, K.; Ritala, M.; Leskela, M. Chem. Vap. Deposition 2000, 6, 297.
- (15) Gallegos, J. J., III; Ward, T. L.; Boyle, T. J.; Rodriguez, M. A.; Francisco, L. P. Chem. Vap. Deposition 2000, 6, 21.
- (16) Ichinose, I.; Senzu, H.; Kunitake, T. Chem. Mater. 1997, 9, 1296.

914

-

¢

3