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The production of electrical energy is one of the largest industries in the United States
(2.8 x1012kWh in 1991). Power production is limited by the availability of natural resources,
environmental concerns, and poor energy conversion efficiencies [1]. The only truly
inexhaustible source of energy is solar radiation. The flux of solar energy incident with the
atmosphere amounts to approximately 1.7 x1017 W per year, 2.7 x104 times human con-
sumption [2]. The possibility of the direct conversion of light to electrical energy was first
recognized in the photoelectrochemical cell reported by Edmond Becquerel in 1839. The
study of modern photovoltaic systems began in 1954 with the work of Chapin, Pearson, and
Rappaport [3]. These solid state photovoltaic cells are based on 1) p- or n-type doping to re-
distribute the charge density across the band gap and 2) semiconductors with narrow band
gaps, i.e. GaAs (1.4 eV), CdSe (1.7 eV), ¢-Si (1.1 eV), [4] which absorb the majority of inci-
dent light.

The cell efficiency is dependent upon the ability of the cell to absorb incident light and
preserve charge separation. The wavelength of light absorbed is directly dependent upon the
width of the band gap [4]. The maximum theoretical efficiency for a single band gap material
is dependent upon the absorption overlapping with solar radiation, i.e. for Eg=1.5€V and an
air-mass ratio of 0, the maximum efficiency is only 40.7% [5,6]. The doping of a semi-
conductor changes the potential energy of the Fermi level. Dopants change the concentration
of holes in the valence band and electrons in the conduction bands by localizing charge on the
dopant. When a hole-doped material is brought in contact with an electron-doped material, a
p-n junction is formed and a potential develops across the interface of the two materials. A
similar event occurs in Schottky-type junctions, where a semiconductor is in contact with a
metal or an electrolytic solution [Figure 1].
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Figure 1. The formation of a Schottky-type barrier, a) n-type semiconductor
and metal (or electrolyte) before junction formation, b) Immediately after
junction formation electrons flow out of the semiconductor into the lower
energy Fermi level of the metal, c) the equilibrium potential at the junction
bends the condunction and valence bands.
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The photoelectrochemical cell is based on a semiconductor-electrolyte Schottky-type
junction [Figure 2a]. Such devices are easier to manufacture than the purely solid state cell but
the instability of the semiconductor limits their practical use in photovoltaic arrays [7]. The
photodecay of the semiconductor is related to the rate of charge capture by the intended agent
in solution. The rate constant for the hererogeneous charge transfer (charge capture), by the
Marcus/Gerischer theory, is dependent upon the reorganization energy for the donor and
acceptor species and the diffusion of the solution species to the surface [8]. These factors,
which limit the rate of the regeneration of the photoaccepting species, are important in all
“wet” photovoltaic cells.

Like the photoelectrochemical cell, the photogalvanic cell is based on a solution-
semiconductor contact. The major differences in the designs are 1) the electrolytic solution in
the photoelectrochemical cell is replaced by a solvated photoactive dye and 2) the small band
gap semiconductor is replaced with a wide band gap semiconductor, e.g. TiO5, SnO5, ZnO
[9]. While photocorrosion of the semiconductor is no longer a major inconvenience, the
efficiency of photogalvanic cells is severely limited by the inability of the excited molecule to
diffuse to the semiconductor surface before undergoing radiative decay.

Recently, strides have been made in the development of a third type of “wet” photo-
voltaic cell [10], where colloidal TiO2 (a wide band gap semiconductor) attached to a con-
ducting surface (SnO3:F) is sensitized to visible light by an adsorbed inorganic dye [11]. The
most efficient dyes are derivatives of the cis-X(2,2’-bipyridyl-4,4’-dicarboxylate), M(II) di-
cation (X = CI, Br, I, CN, SCN; M = Ru, Os) [12]. These cells have displayed maximum ef-
ficiencies of 10% and incident-photon-to-current efficiencies greater than 90%.
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Figure 2. Separation of charges in different types of photovoltaic cells, a)
light absorbtion by semiconductor and separation at a Schottky-type barrier
(eg. “Dry” solar cells based on Schottky-type junctions or photoelectro-
chemical cells), b) light absorbtion by dye and dye-semiconductor charge
separation (eg. photogalvanic cells or dye sensitized semiconductors).

The design of dye sensitized wide band gap photovoltaic cells resulted directly from the
observed difficulties in other systems. The use of wide band gap semiconductors is advanta-
geous due to their optical clarity and their resistance to photocorrosion. The design of meso-



porous films greatly increases the surface concentration of the absorbing dye and thereby in-
creases the efficiency of light absorption for the cell. Finally, the adsorption of the photoactive
dye on the semiconductor allows for rapid, direct injection of electrons into the surface [Figure
2b] and greatly reduces radiative decay, which is the principal disadvantage of photogalvanic
cells. The desire to improve the efficiencies of dye sensitized cells has led to efforts focused on
the derivitization of the dye by either ligand augmentation [13] or antenna functionalization
[11b] and to investigations of the binding of the dye to the electrode surface [14].
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