Organometallic Chemistry of Tungsten-Triosmium Cluster Compounds

Joon T. Park Final Seminar June 23, 1983

The chemistry of transition metal cluster compounds has emerged over the last decade as one of the most rapidly expanding areas of organometallic chemistry [1]. This is in part due to a prospect that discrete cluster molecules may mimic metal surfaces in the processes of chemisorption and catalysis. Currently, mixed metal cluster compounds are under intense scrutiny since they have a number of advantages over their homonuclear counterparts [2]. The present study involves the synthesis, structure, and reactivity of several new tungsten-triosmium (WO₃)₃ cluster compounds. The presence of a tungsten atom in the cluster framework imparts a considerably different reactivity pattern than that observed in triosmium chemistry.

Since the unsaturated osmium cluster H₂Os₃(CO)₁₀ and the "lightly stabilized" osmium complex Os₃(CO)₁₀(NCMe)₂ were reported, their reaction chemistry has been extensively examined. In particular, it has been shown that H₂Os₃(CO)₁₀ undergoes facile insertion reactions with many alkynes (RC=CR) to form alkenyl derivatives [3] (equation (1)), while Os₃(CO)₁₀(NCMe)₂ also reacts with alkynes to provide alkyne triosmium complexes [4] (equation (2)). Stone and coworkers have utilized the isolobal relationships between alkynes and metal alkylidyne complexes (Ln⁻CR⁻M⁻L') to prepare a series of mixed-metal μ-alkylidyne species [5] (equation (3)). The success of this idea has prompted a study of the two reactive triosmium clusters with a tungsten alkylidyne to form WO₃₃ cluster compounds.

\[\text{H}_2\text{Os}_3(\text{CO})_{10} + \text{RC} \equiv \text{CR} \rightarrow \text{HOS}_3(\text{CO})_{10}(\mu-\eta^2-\text{CR}=\text{CHR}) \] \hspace{1cm} (1)

\[\text{Os}_3(\text{CO})_{10}(\text{NCMe})_2 + \text{RC} \equiv \text{CR} \rightarrow \text{Os}_3(\text{CO})_{10}(\mu_3-\eta^2-\text{C}_2\text{R}_2) \] \hspace{1cm} (2)

\[\text{M}'\text{L}_n + \text{L}_m\text{M} \equiv \text{CR} \rightarrow \text{L}_x\text{M}'(\mu-\text{CR}) \] \hspace{1cm} (3)

In contrast to the reaction with alkynes, however, a remarkably facile Os-Os bond cleavage has been observed in the reaction of H₂Os₃(CO)₁₀ with Cp(CO)₂W≡CTol (Cp = η⁵-C₅H₅, Tol = η-C₆H₃Me), giving three products by three parallel pathways: CpWO₃₃(CO)₁₁(μ₃-η²-C(0)CH₂Tol) (1), Cp₂W₂Os(CO)₇(μ₃-η²-C₂Tol₂) (2), and CpWO₃₃(CO)₁₀(μ₃-C₄Tol)₂H (3) [6]. Interestingly, the reaction of Os₃(CO)₁₀(NCMe)₂ with Cp(CO)₂W≡CTol gave a major product, CpWO₃₃(CO)₁₁(μ₃-CTol) (4), in which the Os₃ skeleton remains intact.

