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Reactions of organic molecules on surfaces are central to much of chemistry. Small
molecule behavior at the solid-liquid interface is important in areas as diverse as fuel cells,
environmental remediation, and corrosion protection. The behavior of Co [1] and CN- [2] on
surfaces has been well-characterized and there is interest in studying the behavior of larger
and more relevant molecules.

This work has focused on the behavior of aromatic molecules on Au(111), including:
1) the binding and initial stages of oxidation of phenol, 2) the observation of surface poison-
ing during the continued oxidation of phenol and 2-naphthol, 3) the concentration and pH-de-
pendent adsorption of uracil, and 4) the impact of ring substitution on the binding and reactiv-
ity of cyanophenols. These chemical systems have been studied using electrochemistry, sur-
face infrared spectroscopy, and scanned probe microscopy.

Previous studies of phenol have indicated a potential-induced change in orientation [3]
and the formation of passivating, polymeric films upon electro-oxidation [4,5]. UHV studies
of phenol on Pt(111) indicate the formation of a (3 x 3) overlayer with the phenol ring parallel
to the surface [6]. In solutions with a pH > 10, phenol is deprotonated and the polymerization
reaction proceeds with few side products [7]. Voltammetric studies have shown that substitut-
ing a CN group at ring position 2 or 4 inhibits the electro-oxidation of the molecule while
substitution at the 3 position does not (see Figure 1). The observed inhibition of oxidation is
due to two factors [8]: 1) blocking of preferred polymerization sites, as phenol is known to
polymerize through the ortho and para positions on the ring; 2) electronic effects from the
presence of a strongly electron-withdrawing group ortho or para to the OH group, which sta-
bilizes the anion form ef the molecule.

... ToTTTI
SNeveesssssensssaerzsIiIT Il Ny

— phenol
''''' 4-cyanophenol

1 A L A
-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

E/V vs. NHE
Figure 1. CV of Au(111) in solutions containing 0.1 M NaOH and added organics.

The surface FTIR spectra of phenol, 3-cyanophenol, and 4-cyanophenol are shown in
Figure 2. Phenol and 4-cyanophenol display both positive- and negative-features, while no
bands are observed for 3-cyanophenol. The positive-features for both phenol and 4-cyano-
phenol can be attributed to asymmetric ring modes. These modes are symmetry forbidden in
the solution species of the molecule. A reduction in the symmetry of the system (C2 — Cy)
occurs upon adsorption, which allows the asymmetric ring modes to display intensity. The
negative-feature is due to loss of intensity of the aryl-O stretch as the molecules tilt away from
the surface normal.
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Figure 2. Surface FTIR spectra of A) phenol, B) 3-cyanophenol, C) 4-cyanophenol

" The lack of observable bands for 3-cyanophenol indicates that the molecule is orient-
ing to the electrode surface in a different way than phenol and 4-cyanophenol. The molecule
may be oriented with the ring parallel to the surface or in a disordered fashion. STM investi-
gations provide additional information about the structure of adlayers.

Phenoxide has been shown to adopt a (3x V3)R30° overlayer structure on Au(111)
[9], as shown in Figure 3A. When the potential is briefly swept into the region of phenol oxi-
dation, oligomers of phenol form on the Au(111) surface (Figure 3C). These oligomers have
limited chain length due to close-packing among the molecules on the surface, which limits
the approach of other monomers.

STM studies in solutions containing cyanophenols display the known surface recon-
struction for Au(111) [10], even at potentials which the voltammetry indicates the cyanophe-
nols are associated with the surface. This indicates that the cyanophenols are only weakly
bound to the electrode surface [11]. As the potential is swept positive, 4-cyanophenol adopts
a structure similar to that observed for phenol, while 3-cyanophenol never displays an ordered

overlayer structure. )
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Figure 3. A) STM image of the (¥3 x V3)R30° phenoxide overlayer on Au(111); B) A

model of the overlayer. Ovals represent phenoxide, open circles represent Au(111);
C) STM image of oligomers of phenol Au(111) formed by electro-oxidation.



Computer modeling of the adlayers structures shows that the (\3 x V3)R30° overlayer
structure is close-packed for phenol and 4-cyanophenol. The presence of the CN group at ring
position 3 creates steric repulsions between the molecules, preventing the formation of the (V3
x V3)R30° adlayer. Packing between rings has been shown to be important in the formation of
ordered adlayers [12]. As the steric hindrance drives the molecules apart, less packing can
occur between rings and there is inherently less order in the overlayer.
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