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Although polydiphenylsilane [1] and polydimethylsilane [2] were synthesized earlier 
this century, there was little interest in these compounds because of their insolubility, in­
tractability and highly crystalline nature. More recently, however, there has been a resurgence 
of interest in this area because of the discovery of soluble polysilane derivatives [3]. 

Linear homopolymers and copolymers are commonly synthesized according to a 
Wurtz-type coupling process, 

RR'SiC!i + 2 Na ---+ [-RR'Si-]n + 2 NaCl 

where R, R' =alkyl or aryl, but this method has several drawbacks including low yields of 
high molecular weight polymer, a bimodal molecular weight distribution and limited functional 
group tolerance [3,4,5,6]. It has been shown that sonochemical agitation of reaction mixtures 
results in a monomodal product distribution with a high yield of high molecular weight homo­
polymer, but this procedure seems to be valid only for aryl-substituted monomers [7]. Co­
polymers containing both alkyl and aryl substituents can also be synthesized using sono­
chemistry. Polysilanes, in general, are oxidatively and thermally stable to over 200°C, and 
many polysilanes can be melted and recast without decomposition [4]. 

The polysilanes exhibit a significant amount of electron delocalization and a-conjuga­
tion along the silicon chains, and therefore, have some very interesting spectral properties 
[8,9,10]. All soluble, high-molecular weight polysilane derivatives absorb in the ultraviolet 
region, and the transition wavelength is highly dependent on the nature of the substituents [8]. 
The absorption is also dependent on the chain length, or length of a-conjugation, and shifts to 
higher wavelengths until it reaches a maximum wavelength at n = 20-24 [8]. These transitions 
can be attributed to a transition between the a and a* orbitals in the Si framework [8]. The 
alkyl-substituted polysilanes in solution display strong electronic transitions in the region of 
300-310 nm, while the aryl-substituted polysilanes absorb in the region of 335-345 nm [8]. 
The red shift of 20-30 nm in the aryl derivatives is due to the interaction of the substituent 7t 

orbitals with the orbitals on the silicon backbone [4]. 

The absorption spectra of thin films are significantly different from the absorption spec­
tra of solutions [10]. In cases where conformational rigidity is enforced by side-chain crystal­
lization, the electronic absorption occurs at significantly longer wavelengths than expected 
[10]. In the case of thin films of poly(di-n-hexylsilane), the spectrum showed an intense ab­
sorption at 37 4 nm with a weak absorption at 317 run [ 1 OJ. Upon heating the film at l00°C, 
the absorption band at 374 nm shifted to 317 nm indicating that the n-hexyl side groups melted 
and introduced disorder into the backbone [ l 0]. Upon cooling the film, the absorption band 
shifts back to 374 nm, indicating that the transition is fully reversible [10]. Transitions of this 
type can also be observed using DSC, IR and Raman and can be induced using pressure 
[9, 10]. 

The polysilanes have also been found to be light sensitive both in solution and in solid 
form [4,8,11). Upon irradiation, polysilanes degrade to lower molecular weight fragments 
[11]. Polysilanes with unsaturated pendent groups, such as poly(phenylmethylsilane), exhibit 
crosslinking in addition to degradation [11 ]. The photodegradation can be studied using ultra­
violet spectroscopy. As the polymer degrades and the molecular weight decreases, the absorp-
tion band shifts to shorter wavelengths [11]. · 
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The unique properties of the polysilanes have led to a number of important applications. 
In the mid-1970's, Yajima and coworkers discovered that polydimethylsilane could be con­
verted to the ceramic ~-silicon carbide through a series of steps [12]. More recently, however, 
polysilane copolymers have been developed which can be directly convened to silicon carbide 
through the following reaction [13]: 

Na, toluene 
Me2SiC!i + PhMeSiC!i ___ ___.,. 

(a) hv 
(I)--_.. 

(b) soo·c 

reflux 

PhH + CJ-4 + 2 H2 + 2 SiC 

The copolymer is synthesized using conventional techniques, melted and cast into the desired 
form and then crosslinked using ultraviolet light. The crosslinked polymer can then be con­
vened to silicon carbide by heat-treannent. The main advantages of this technique are that the 
method is straightforward and ceramics can be produced which are uniform in shape and size 
[13,14]. 

Other possible applications include the use of polysilanes in microlithography [11,15], 
as semiconductors [16] and as photoinitiators for polymerization [17]. 
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