David A. Lesch

Final Seminar

July 20, 1982

The tellurium analogs of the two well-studied classes of transitionmetal nonmetal clusters $Co_3(\mu_3-E)(CO)_{9,12}$ (E = CR, SiR, GeR, SnR, P, As, Sb, S, Se) [1] and $[M(\mu-E)(CO)_3]_{2,4}$ (M = Co, Fe; E = P, As, Sb, S, Se) [2] have not been reported. This fact plus the observation that when the covalent radius of E $[r_{COV}(E)] \leq 1.22A$ the cluster is totally M-M bonded and when $r_{COV}(E) \leq 1.40A$ the cluster is totally M-M nonbonded suggests that there might be unique properties associated with first row transition-metal clusters containing tellurium $(r_{COV} = 1.36 A)$. Evidence for unusual reactivity has long been recognized for Fe₃ $(\mu_3-Te)_2$ -(CO)₉ which, unlike Fe₃ $(\mu_3-S)_2$ (CO)₉ or Fe₃ $(\mu_3-Se)_2$ (CO)₉, forms stable Lewis base adducts [3]. Previous workers suggested that this difference in reactivity was due to coordination of the Lewis base to tellurium [4].

large E

Thermal or chemical (Me₃NO) decarbonylation of the characteristically orange adducts gives substituted products which are spectroscopically similar to the purple Fe₃(μ_3 -Te)₂(CO)₉. The maximum extent of substitution

43

is dominated by steric effects: ligands of large cone angle give disubstitution, those of intermediate cone angle give tri- or tetrasubstitution and lastly, very compact ligands (eg. $P(OCH_2)_3CCH_3$) yield the hexasubstituted cluster.

Fe₃ (μ_3 -Te)₂ (CO)₉ can be obtained in ~90% yield from the thermal decarbonylation of Fe₃ (μ_3 -Te)₂ (CO)₁₀ which in turn is prepared via the reduction of TeO₃²⁻ by HFe(CO)₄⁻. A minor product (<10%) in this synthesis is Fe₂ (μ -Te₂) (CO)₆ [6]. Although it is a useful precursor to mixed-metal clusters, Fe₂ (μ -Te₂) (CO)₆ is relatively unstable with respect to its dimer, Fe₄ (μ_3 -Te)₄ (CO)₁₂, which in analogy to Co₄ (μ_3 -Sb)₄- (CO)₁₂ has the cubane structure. Fe₂ (μ -Te₂) (CO)₆ can also be generated in situ from Fe₃ (μ_3 -Te)₂ (CO)₉ in MeCN and this process forms the basis for the reactions described below.

Fe₃ (μ_3 -Te)₂ (CO)₉ reacts with Pt(PPh₃)₂C₂H₊ to give (CO)₆Fe₂ (μ_3 -Te)₂-Pt(PPh₃)₂ whose structure, based on analogy with the crystallographically defined (CO)₆Fe₂ (μ_3 -Se)₂Pt(PPh₃)₂, is similar to Fe₃ (μ_3 -Te)₂ (CO)₉ (PPh₃) [7]. Its ¹²⁵Te NMR chemical shift of -861 ppm is also similar to the adduct (δ -887 and -938 ppm). The chemical shifts of these arachno clusters are in sharp contrast to those of the <u>nido</u> Fe₃ (μ_3 -Te)₂ (CO)_{9-n}L_n (δ ~+1100 ppm). This same chemical shift pattern was observed for the isoelectronic compounds (CO)₆Fe₂ (μ_3 -Te)₂ (CO)₉, 1 (M = Co, Rh) which were prepared from Fe₃ (μ_3 -Te)₂ (CO)₉ results in sequential replacement of iron to ultimately give Co₄ (μ_4 -Te)₂ (CO)_{10,11}.

References

- 1. Schmid, G. Angew. Chem., Int. Ed. Engl. 1978, 17, 392.
- Campana, C.F.; Lo, F.Y.-K.; Dahl, L.F. Inorg. Chem. 1979, 18, 3060 and references therein.
- Cetini, G.; Stanghellini, P.L.; Rossetti, R.; Gambino, O. J. Organomet Chem. 1968, 15, 373.
- 4. Aime, S.; Milone, L.; Rossetti, R.; Stanghellini, P.L. J. Chem. Soc., Dalton Trans. 1980, 46.
- 5. Lesch, D.A.; Rauchfuss, T.B. Organometallics 1982, 1, 499.
- 6. Lesch, D.A.; Rauchfuss, T.B. Inorg. Chem. 1981, 20, 3584.
- Day, V.W.; Lesch, D.A.; Rauchfuss, T.B. J. Am. Chem. Soc. 1982 104, 1291.

44