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Methane serves as the sole source of carbon and energy for methanotrophic bacteria. 
Methane monooxygenase (MMO) catalyzes the oxidation of methane to methanol at ambient 
temperature and pressure. 1 Aside from methane, MMO can also catalyze the oxidation of a 
variety of other hydrocarbons including alkane, alkene, aromatic, alicyclic, heterocyclic and 
halogenated compounds.2 Studies of the structure and mechanism of MMO can provide 
insights for designing better industrial catalysts for methane hydroxylation, as well as its 
applications in bioremediation. The active site of soluble MMO contains a non-heme diiron 
center, which is located at the a. subunit of the hydroxylase component of MM0.3 The other 
two components are the reductase, which transfers electrons from NADH to the diiron 
center,4 and component B, which is a regulatory protein.s Hydroxy lase is capable of catal­
yzing hydroxylation reaction either upon chemical reduction and exposure to 0 2, or upon 
addition of H202, suggesting that the complete active site required for oxygenase catalysis 
resides on the hydroxylase alone.6 

X-ray crystallography and a variety of spectroscopic techniques, including EXAFS, 
Mossbauer, EPR, ENDOR, MCD, optical, and Resonance Raman spectroscopy have been 
used to characterize the structure of the dinuclear iron active site. Mossbauer? and EPR8 
spectra demonstrated that the resting state of the native hydroxy lase CHox) contains an anti­
ferromagnetically coupled high-spin difertic center. This diferric unit can be fully reduced to 
a ferromagnetically coupled high-spin diferrous species (Hred), which is the active form of the 
enzyme reacting with dioxygen. The X-ray crystal structure of Hox at 4°C (Figure IA) reveals 
a carboxylate-rich ligand environment.9 The frozen-crystal structures of Hox (Figure lB) and 
Hred (Figure 1 C) indicate that upon reduction, Glu243 undergoes carboxylate-shift.10 This 
kind of change in carboxylate coordination-mode has been observed in the R2 protein of 
ribonucleotide reductase and several synthetic model complexes.11 Carboxylate shifts can 
provide coordination site for the incoming dioxygen without causing large changes in the 
coordination sphere. 
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Figure 1 

Fully reduced hydroxylase activates dioxygen and generates a highly active species 
that can oxidize the substrates. Quring this process, two diamagnetic intermediates, termed P 
and Q, have been detected with r~pid freeze-quench Mossbauer and stopped-flow optical 
spectroscopy .12 P was assigned as a diiron(ill)-peroxo species based on its Resonance 
Raman,13 optical, and Mossbauer parameters.12 Two synthetic non-heme diiron(III) peroxo 
adducts have been crystallized recentlyl4 (Figure 2), providing certain insight into the nature 
of intermediate P. Intermediate Q was proposed to have a formal diiron(IV) oxidation state 
based on its diamagnetism and unusually small isomer shift (-0.18 mm/s). This kind of non­
heme diiron(IV) species has not been observed in either synthetic complexes or other 
proteins. 
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Figure2 

Several mechanisms of substrate hydroxylation have been proposed. One of them 
(Figure 3) is based on the similarity of MMO with cytochrome P-450 in substrate ranges and 
product-distributions. IS It involves the abstraction of hydrogen from the substrate to form a 
substrate radical, which then rebinds to the hydroxyl on one of the iron atoms, and yields the 
alcohol product. The observation of configuration inversion of a chiral substrate16 and the 
detection of EPR signals of several spin-trapping radical adducts17 support this radical-based 
mechanism. Evidence for other mechanis~. such as involvement of a cationic intermediate,18 
has also been obtained. The exact mechanism is probably dependent on properties of the 
substrates, sources of the enzyme, regulation by Component B, and temperature of the 
reaction. Further studies are needed to obtain better understanding of the mechanism of 
methane monooxygenase. 1 
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