Chemistry of Ruthenium η^4 -Thiophene Complexes

Shifang Luo

Final Seminar

February 18, 1993

The organometallic chemistry of transition metal thiophene complexes has been of increasing interest with recent emphasis on structural and reactivity principles [1]. These studies are relevant to the practical hydrodesulfurization (HDS) process, which is operated on enormous scale in the petroleum industry to remove S-containing impurities from the crude fossil oils by hydrotreating over a MoS₂-Co₉S₈/ γ -Al₂O₃ catalyst [2]. Our interests in the chemistry of Rh and Ru η^4 -thiophene complexes stem from their high catalytic activity [3], and the unusual reactivity exhibited by η^4 -thiophene ligands [4]. This lecture will deal only with my research on the ruthenium complexes. Research on the rhodium complexes has already appeared [4f,4g].

The starting complexes $(C_6Me_6)Ru(\eta^4$ -thiophene) (thiophene = C_4H_4S , 2,5-Me₂C₄H₂S, 2,3,4,5-Me₄C₄S) were synthesized from the cobaltocene reduction of the corresponding $[(C_6Me_6)Ru(\eta^5$ -thiophene)]²⁺ salts (eq. 1), which in turn were prepared from the reaction of $[(C_6Me_6)RuCl_2]_2$ with thiophenes in the presence of AgOTf (OTf is OSO₂CF₃-).

The thiophene ligand is reduced in preference to the arene. This is consistent with the relatively milder reduction potentials for the homoleptic complexes $[Ru(C_4Me_4S)_2]^{2+}$ (-392, -568 mV vs. Ag/AgCl) [5] vs. $[Ru(C_6Me_6)_2]^{2+}$ (2e at -976 mV) [6]. The average reduction potential for $[(C_6Me_6)Ru(C_4Me_4S)]^{2+}$ (-525 mV) differs by only 45 mV from that of $[Ru-(C_4Me_4S)_2]^{2+}$ [7]. The redox-induced hapticity method also allowed the preparation of the thermally unstable complex $(\eta^5-C_4Me_4S)Ru(\eta^4-C_4Me_4S)$ whose structure has been confirmed by the single crystal X-ray diffraction study on its thermally stable adduct $(\eta^5-C_4Me_4S)Ru(\eta^4:\eta^1-C_4Me_4S)Fe(CO)_4$ (a) [8].

Having prepared a series of Ru(0) thiophene derivatives, our studies have focused on their reactivity. Scheme I lists the reactions for the thermally most stable $(C_6Me_6)Ru(\eta^4-C_4Me_4S)$.

Scheme I. Reactions of $(C_6Me_6)Ru(\eta^4-C_4Me_4S)$

The thermal decomposition of Ru(0) thiophene ensembles 4f,4g,9 closely resembles the Temperature Programmed Desorption (TPD) technique widely employed in surface science studies, 10 with the advantage that structural assignments in later case are very secure. Thermolysis of $(C_6Me_6)Ru(\eta^4-C_4Me_4S)$ in non-aromatic solvents such as hexane produced the trinuclear product $(C_6Me_6)_3Ru_3(C_4Me_4S)_2$ (Scheme I), whose structure has been determined by single crystal X-ray diffraction study (b).

In an effort to hydrogenate the coordinated thiophene ligand, $(C_6Me_6)Ru(\eta^4-C_4Me_4S)$ was thermolyzed in the presence of H_2 which produced the hydride $(C_6Me_6)Ru(C_6Me_6)-Ru(\eta^4:\eta^1-C_4Me_4S)(H)_2$ instead. When the thermolysis of $(C_6Me_6)Ru(\eta^4-C_4Me_4S)$ was conducted in aromatic solvents, arene exchange reaction between $\eta^6-C_6Me_6$ and aromatic solvents occurs. In dilute solutions, only arene exchange products $(\eta^6\text{-solvent})(C_6Me_6)_2-Ru_3(C_4Me_4S)_2$ (solvent = C_6D_6 , toluene) were obtained while in concentrated solutions both $(C_6Me_6)_3Ru_3(C_4Me_4S)_2$ and $(\eta^6\text{-solvent})(C_6Me_6)_2Ru_3(C_4Me_4S)_2$ were obtained [11].

 $(C_6Me_6)Ru(\eta^4-C_4R_4S)$ can be protonated with the weak acid NH₄PF₆ to give $[(\eta^6-C_6Me_6)Ru(\eta^4-2-H-C_4R_4S)]$ PF₆ (Scheme I). Both NMR spectroscopy and the X-ray crystallographic study on $[(\eta^6-C_6Me_6)Ru(\eta^4-2-H-2,5-Me_2C_4H_2S]$ PF₆ reveal that the protonation reaction occurs stereo- and regioselectively such that the added proton in the products is in the endo position of the carbon α to sulfur [7]. It is proposed that the hydrogen arrives at the carbon position via the intermediacy of a metal hydride, possibly via an agostic complex [12,13].

"Temperature programmed decomposition" of $[(\eta^6-C_6Me_6)Ru(\eta^4-2-H-C_4H_4S)]PF_6$ revealed C-S bond oxidative addition at the Ru center to afford the ring opened thiapenta-dienyl complexes $[(\eta^6-C_6Me_6)Ru(\eta^5-CH_2=CH-CH=CH-S)]PF_6$ both in solution and solid state (eq. 2).

$$\begin{bmatrix} H & H & (D) \\ H & Ru \\ \end{bmatrix}^{+} & \begin{bmatrix} k_1 & H & (D) \\ H & Ru \\ \end{bmatrix}^{+} & (2)$$

The solution process is first order with $k_{eq} = 4.38$ at 45 °C. The conversion occurs with the retention of the configuration at carbon as shown in eq 2. The solid state conversion has been successfully monitored by solid state CP/MAS ¹³C NMR spectroscopy [14].

References

- 1. Recent reviews on thiophene coordination chemistry:
 - (a) Rauchfuss, T. B. Prog. Inorg. Chem. 1991, 39, 259.
 - (b) Angelici, R. J. Coord. Chem. Rev. 1990, 105, 61.
 - (c) Angelici, R. J. Acc. Chem. Res. 1988, 21, 387.
- 2. (a) Gates, B. C. Catalytic Chemistry; John Wiley: New York, 1992.
 - (b) Reynolds, J. G. Chem. and Ind. 1991, 570.
- 3. (a) Pecoraro, T. A.; Chianelli, R. R. J. Catal. 1981, 61, 430.
 - (b) Chianelli, R. R. Cat. Rev. Sci. Eng. 1984, 26, 361.
- 4. (a) Ogilvy, A. E.; Skaugset, A. E.; Rauchfuss, T. B. Organometallics 1989, 8, 2739.
 - (b) Chen, J.; Angelici, R. J.; Organometallics 1989, 8, 2277.

- (c) Skaugset, A. E.; Rauchfuss, T. B.; Wilson, S. R. Organometallics 1990, 9, 2875
- (d) Chen, J.; Daniels, L. M.; Angelici, R. J. J. Am. Chem. Soc. 1990, 112, 199.
- (e) Chen, J.; Daniels, L. M.; Angelici, R. J. J. Am. Chem. Soc. 1991, 113, 2544.
- (f) Luo, S.; Ogilvy, A. E.; Rauchfuss, T. B.; Rheingold, A. L.; Wilson, S. R. Organometallics 1991, 10, 1002
- (g) Luo, S.; Skaugset, A. E.; Rauchfuss, T. B.; Wilson, S. R. J. Am. Chem. Soc. 1992, 114, 1732.
- 5. Lockemeyer, J. R.; Rauchfuss, T. B.; Rheingold, A. L.; Wilson, S. R. J. Am. Chem. Soc. 1989, 111, 8828.
- 6. (a) Pierce, D. T.; Geiger, W. E. J. Am. Soc. Chem. 1992, 114, 6063.
 - (b) Finke, R. G.; Voegeli, R. H.; Laganis, E. D.; Boekelheide, V. Organometallics 1983, 2, 347.
- 7. Luo, S.; Rauchfuss, T. B.; Wilson, S. R. J. Am. Chem. Soc. 1992, 114, 8515.
- 8. Luo, S.; Rauchfuss, T. B.; Wilson, S. R. Organometallics 1992, 11, 3497.9.
- 9 (a) Ogilvy, A. E.; Draganjac, M.; Rauchfuss, T. B.; Wilson, S. R. Organometallics 1988, 7, 1171, and references therein.
 - (b) Jones, W. D.; Dong, L. J. Am. Chem. Soc. 1991, 113, 559
 - (c) Jones, W. D.; Chin, R. M. Organometallics 1992, 11, 2698.
 - (d) Chin, R. M.; Jones, W. D. Angew. Chem. Int. Ed. Engl. 1992, 31, 357.
 - (e) Jones, W. D.; Chin, R. M. J. Am. Chem. Soc. 1992, 114, 9851.
- 10. Thiophene TPD study on Ru(0001) surfaces:
 - (a) Cocco, R. A.; Tatarchuk, B. J. Surf. Sci. 1989, 218, 127.
 - (b) Heise, W. H.; Tatarchuk, B. J. Surf. Sci. 1989, 207, 297.
- 11. Luo, S.; Rauchfuss, T. B.; Rheingold, A. L., manuscript in preparation.
- 12. Brookhart, M.; Green, M. L. H.; Wong, L.-L. Prog. Inorg. Chem. 1988, 36, 1.
- 13. (a) Bennett, M. A.; McMahon, I. J.; Pelling, S.; Brookhart, M.; Lincoln, D. M. Organometallics 1992, 11, 127.
 - (b) Bennett, M. A.; Pelling, S.; Robertson, G. B.; Wickramasinghe, W. A. Organometallics 1991, 10, 2166.
 - (c) Bennett, M. A.; Nicholls, J. C.; Rahman, A. K. F.; Redhouse, A. D.; Spencer, J. L.; Willis, A. C. J. Chem. Soc. Chem. Commun. 1989, 1328.
 - (d) Buchmann, B.; Piantini, U.; von Philipsborn, W.; Salzer, A. Helv. Chim. Acta. 1987, 70, 1487.
- 14. Luo, S.; Gan, Z.; Rauchfuss, T. B., to be submitted.