Synthesis and Reactivity Studies of High-Nuclearity Carbido Carbonyl Clusters of Heptarhenium-Iridium and Decaruthenium

Linging Ma

Final Seminar

In the past several years the chemistry of high-nuclearity transition metal clusters has received growing attention [1], owing to its relevance to the understanding of metal-organic substrate interactions on the surfaces of heterogeous catalysts. The systematic synthesis of these medium-to-large clusters and their reactivities towards small organic molecules are the two major components of current research.

The starting point of our work on the mixed-metal clusters is the preparation and structural characterization of a series of capped heptarhenium carbido carbonyl clusters, $[Re_7C(CO)_{21}ML_n]^{2-}$, based on the proposed analogy between the cyclopentadienyl ligand and the cluster trianion $[Re_7C(CO)_{21}]^{3-}$ [2]. In the search for additional examples of this series, we obtained the cluster anion $[Re_7C(CO)_{21}Ir(C_8H_{14})(CO)]^{2-}$ ($C_8H_{14} =$ cyclooctene) via a two step reaction. The ¹³C NMR spectrum showed that this anion has a 1,4-bicapped octahedral structure.

[Ir(C8H14)2(CO)Cl]2	+	AgBF ₄ $\frac{\text{excess C}_8\text{H}_{14}}{$	$[Ir(C_8H_{14})_2(CO)]^+$	+	AgCl
" $[Ir(C_8H_{14})_2(CO)]^+$ "	+	[Re ₇ C(CO) ₂₁] ³⁻	\rightarrow [Re ₇ C(CO) ₂₁ Ir(C ₈ I	H ₁₄)((CO)] ²⁻

The lability of the cyclooctene ligand in $[\text{Re}_7C(\text{CO})_{21}\text{Ir}(C_8\text{H}_{14})(\text{CO})]^{2-}$ allowed ligand substitution with the formation of $[\text{Re}_7C(\text{CO})_{21}\text{Ir}(L)(\text{CO})]^{2-}$ (L = C₂H₄, CO, PPh₃, and PMePh₂). Oxidative addition of triphenylsilane and allyl bromide also occur at iridium, giving $[\text{Re}_7C(\text{CO})_{21}\text{Ir}(\text{H})(\text{CO})(\text{SiPh}_3)]^{2-}$ and $[\text{Re}_7C(\text{CO})_{21}\text{Ir}(\eta^3-\text{C}_3\text{H}_5)(\text{CO})]^{1-}$ respectively. These derivative compounds were characterized by a combination of IR and NMR spectroscopy, FAB-mass spectrometry, and in selected cases also by X-ray crystallography. During the studies, it was found that the above reactions at the iridium center closely parallel those of an indenyl iridium compound ($\eta^5-\text{C}_9\text{H}_7$) Ir(C₈H₁₄)(CO) [3], giving further support for the Cp⁻ \leftrightarrow $[\text{Re}_7C(\text{CO})_{21}]^{3-}$ analogy.

Polyhedral rearrangements are interesting and also intriguing aspects of cluster chemistry [4]. The compound $[\text{Re}_7\text{C}(\text{CO})_{21}\text{Ir}(\text{CO})_2]^{2-}$ was observed to undergo an irreversible metal framework rearrangement process to give a new isomer $\{[\text{Re}(\text{CO})_3]_2[\text{Re}_5\text{Ir}\text{C}(\text{CO})_{17}]\}^{2-}$, which has a 1,3-bicapped octahedral structure. The isomerization process was found to be a first order reaction with the activation parameters $\Delta H^{\ddagger} = 31.0 \pm 0.5$ kcal/mol and $\Delta S^{\ddagger} = 13.9 \pm$ 1.5 cal/mol·K. A reaction mechanism consisting of multiple diamond-square-diamond processes has been proposed for the framework rearrangement (Scheme I).

The anion $\{[Re(CO)_3]_2[Re_5IrC(CO)_{17}]\}^{2-}$ undergoes a decapping reaction in refluxing acetonitrile to give $[Re_6IrC(CO)_{20}]^{3-}$, which is a structural analog of $[Re_7C(CO)_{21}]^{3-}$. This new trivalent anion also reacts with the transition metal electrophile, Au(PPh₃)⁺, giving not only the mono-gold capped compound $[Re_6IrC(CO)_{20}Au(PPh_3)]^{2-}$, but also the di-gold capped cluster $\{[Re_6IrC(CO)_{20}][Au(PPh_3)]_2\}^{1-}$. The structural characterization of both compounds was based on ³¹P and variable-temperature ¹³C NMR spectroscopy.

Scheme I

The dicarbidodecaruthenium cluster anion $[Ru_{10}C_2(CO)_{24}]^{2-}$ was first prepared by the pyrolysis of $[Ru_6C(CO)_{16}]^{2-}$ at 200 - 220 °C in tetraglyme over a period of days [5]. An alternative route, the redox condensation of $[Ru_6C(CO)_{16}]^{2-}$ and $Ru_5C(CO)_{15}$, has been discovered, which represents an improvement by reducing the reaction time and temperature. A diphenylacetylene substituted product, $[Ru_{10}C_2(CO)_{22}(C_2Ph_2)]^{2-}$, has also been synthesized and isolated by column chromatography. An X-ray crystallographic study helped to establish the bonding between the acetylene moiety and the metal core. It was observed that a Ru-Ru bond formed during ligand substitution, and that the acetylene was bound in a μ,η^2 coordination mode (Scheme II).

Scheme II

 $[Ru_{10}C_2(CO)_{24}]^{2-1}$

References

- 1. Vargas, M. D.; Nicholls, J. N. Adv. Inorg. Chem. Radiochem. 1986, 30, 123.
- 2. Henly, T. J.; Shapley, J. R.; Rheingold, A. L.; Geib, S. J. Organometallics 1988, 7, 441.
- 3. Ma, L.; Szajek, L. P.; Shapley, J. R. Organometallics 1991, 10, 1662.
- 4. (a) Mingos, D. M. P.; Wales, D. J. Introduction to Cluster Chemistry; Prentice Hall: Englewood Cliffs, NJ 1990; Chapter 6.
 - (b) Johnson, B. F. G.; Rodger, A. In *The Chemistry of Metal Cluster Complexes*; Shriver, D. F., Kaesz, H. D.; Adams, R. D., Eds.; VCH Publishers: New York, **1990**; Chapter 6.
- 5. Hayward, C.-M. T.; Shapley, J. R.; Churchill, M. R.; Bueno, C.; Rheingold, A. L. J. Am. Chem. Soc. 1982, 104, 7347.