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Linqing Ma Literature Seminar April 8, 1989 

Alkanes constitute a large portion of naturally occurring fossil fuels such 
as petroleum an-d natural gas and play a major role in the chemical industry as 
several heterogeneous processes are producing large amounts of important petro­
chemical products using alkanes as feedstocks. But it has been a long standing 
challenge to organometallic chemists to discover a plausible approach to selec­
tively and catalytically activate and functionalize paraffin C-H bonds under 
relatively mild conditions using discrete organometallic compounds [1]. 

In contrast to the success of C-H bond activation in hydrocarbonyl ligands 
incorporated in organometallic molecules (intramolecular C-H activation or 
cyclometallation) reported in the 1960's and l970's, attempts to activate C-H 
bonds in external alkanes using solub~e transition metal complexes generally 
failed, although there have been reports that HID exchange in light aliphatic 
alkanes can be achieved using platinum salts as catalysts [2]. The mechanism of 
this process is not well established and the debate over the involvement of a 
heterogeneous catalyst (colloidal Pt) is not settled. Another prevalent category 
of reactions involves the cleavage of activated C-H bonds, such as those in 
arenes, olefins and other functionalized organic molecules. One postulate holds 
that the lack of progress in inter-molecular alkane C-H bond activation could be 
mainly for thermodynamic reasons [3]. Metal-carbon bonds are normally weak (18-25 
kcal/mol for cobalt and manganese), while the C-H bonds in alkanes are strong and 
the overall C-H bond oxidative addition to a first row organometallic moiety is 
considered to be a thermodynamically unfavorable process. 

The earliest reports of successful syntheses of cis-alkyl hydrido organo­
metallic compounds directly from alkanes came from Bergman's [4a~ and Graham's 
groups [6a] in 1982. The compound used in Bergman's study is (n -c5Me5 )Ir­
(PMe3)H2, which was irradiated at room temperature in saturated hydrocarbon sol­
vents. Products (n5-c5Me5 )Ir(PMe3)(R)(H) were characterized and deuterium 
l~belling studies ruleo out a radical process. The elimination of H2 to give a 16 
e intermediate followed by alkane oxidative addition is consistent with experi­
mental observations [4b]. An n2-o complex is suggested as the transition state 
for the alkane oxidative addition, based on result~ from the microscopic reverse 
reactioQ, reductive elimination of alkanes from Cp lr(PMe3)(R)(H) [5]. The com­
plex Cp Ir(C0) 2 , as shown by Graham and coworkers, also reacts with various 
alkanes under photolysis [6a-b]. It is believed that the initial step in generat­
ing a 16 e- intermediate is CO loss, as confirmed by a low temperature methane 
matrix experiment [7a]. There is, however, evidence that the presence of CO does 
not reduce the benzene C-H bond oxidative addition rate, as reflected by photo­
chemical quantum yield [7b]. Subsequent reports describing the activation of 
saturated alkanes by analogous rhodium [4c-d] and rhenium [4e] systems have ap­
peared. 
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To understand the thermodynamic driving force of thesl seemingly exceptional 
systems, bond disruption enthalpies of Ir-C and Ir~f in Cp Ir(PMe3 )(R)(H) were 
measured. It was found that iridium has much stronger Ir-C and Ir-H bOnds than 
those formed by its lig~ter congeners, cobalt and rhodium. The reaction of [Ir] + 
R-H->R-[Ir]-H [Ir]= Cp (PMe)Ir) is an exothermic process [8]. 

A molecular orbital study was carried out using the extended Huckel method to 
calculate the potential energy surface of CH 4 approachigg unsaturated organo­
metallic fragment (9]. The approach of CH 4 to a bent d Rh(C0)4+ is energetically 
favored over approach to a square planar molecule. This is attributed to the 
energy level of the HOMO dyz orbital which controls the oxidative addition activa­
tion barrier. The higher the energy of the dyz orbital is, the lower the activa­
tion energy. An example of a bent ML 4 C-H activating molecule is 
carbonyl[tris(3,5-dimethylpyrazolyl)borato]rhodium(I) which shows enhanced photo­
chemical efficiency [10]. It is also predicted that the d10 trigonal ML3 and bent 
ML2 intermediates should insert into C-H bonds. This is confirmed by the report 
that a (diphos)platinum(O) intermediate can activate saturated C-H bonds at mild 
temperatures in dilute solutions [11]. 

An important goal has also been the control of the selectivity of alkane C-H 
bond activation. This includes the selective activation of external C-H bonds 
without cyclometallation of the ligand, activation of saturated C-H bonds, and the 
activation of primary C-H bonds. Since cyclometallation is always favored thermo­
dynamically (by entropy arguments) over the intermolecular process provided no 
ring strain is involved, it is fundamental to know what makes the aforementioned 
systems special in choosing external C-H bonds. Crabtree concluded, after study­
ing various complexes known to have an agostic C-H interaction [12a-b] and summa­
rizing previous works concerning intramolecular C-H activation [13a-b], that there 
is a delicate balance between the conformational change needed to reach the tran­
sition state and the steric crowding around the metal that governs the inter- vs. 
intramolecular selectivity. I ntermolecular reaction is favored by the former 
factor but the latter factor acts against it. Jones shows that cp*(PMe2Prn)Rh can 
react with both n-propane (intermolecular C-H bond activat ion) and the phosphine 
n-propyl substituent (cyclometallation). The latter process is more exothermic, 
but needs to ~vercome a larger aotivation barrier [14]. The more sterically 
encumbered Cp Re(PMe3 )3 also shows reduced reactivity towards external C-H bonds 
[ 15]. 

The working hypothesis concerning the generally more facile arene or olefin 
C-H hond activation is that arenes can precoordinate to the metal center through 
n-electrons so that they have lower energy access to the transition states of 
oxidative addition . This is found to be the case in ar ene C-H bond activation by 
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The preference for primary C-H bonds in both the iridium and rhodium systems 
seems to be the results of the steric requirements of the transition states and 
the bond energies of the products. A carbon atom with bulkier substituents forms 
a less stable metal-carbon bond. Rhodium is observed to have better selectivity 
than iridium, presumably because of the strength of the metal-carbon bonds 
[18a-b]. 

All the above systems give only stoichiometric C-H bond activation. Although 
cis-alkyl hydrido complexes can be transformed into alkyl halides, which can then 
reductively eliminate RX in the presence of Br2 or HgC1 2 , the yields are far from 
satisfactory. It was observed several years before the first isolation of the 
cis- alkyl hydrido complexes that certain iridium and rhenium polyhydrides can 
catalyze dehydrogenation of cycloalkanes with the help of a hydrogen acceptor such 
as t-butylethylene, and incorporate the product diene as a ligand. By varying the 
phosphine ligand and the reaction conditions, catalytic dehydrogenation of cyclo­
alkanes was achieved with moderate turnover numbers [19a-d]. The catalytic cycle 
is proposed to contain a step in which the alkane C-H bond oxidatively adds to the 
metal. 

further investigation is underway in the discovery of complexes that facili­
tate catalytic alkane C-H bond functionalization as well as systems that can shed 
more light on the fundamentals of this process. 
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