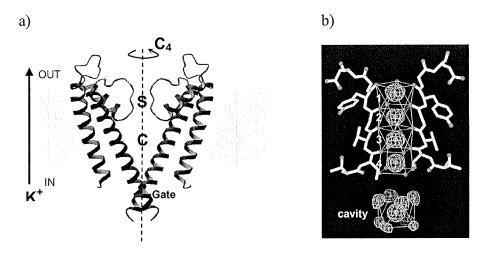
Ion Transport through Cellular Potassium Channels


Debapriya Mazumdar

Inorganic Literature Seminar

November 16, 2004

Ion channels are membrane proteins that mediate the rapid conduction of ions down the electrochemical potential. Potassium channels transport K^+ ions from the intracellular to extracellular region with an almost diffusion limited conduction rate of $10^7-10^8~K^+$ per second with a high selectivity for K^+ (r=1.33~Å) over Na^+ (r=0.95~Å). 2,3

Ion channels have been studied extensively since the early 1900's. 1,2 A major breakthrough in the study of ion channels came with the determination of the first high resolution structure of an ion channel, the K^+ channel from the bacteria *Streptomyces lividans* (the KcsA K^+ channel). 3

Figure 1: Structure of the KcsA K^+ channel with the front and back protein subunits omitted for clarity. a) Ribbon representation of two protein subunits surrounding the selectivity filter (S) and cavity (C). 4 C₄ denotes a four-fold rotation axis. b) Binding sites (1 - 4) for K^+ ions in the selectivity filter and a hydrated K^+ ion in the cavity. Red spheres: oxygen, green spheres: K^+ ion. 2,5

The crystal structure of the KcsA K^+ channel shows that the pore region consists of four protein subunits of which only two are shown in figure 1.^{3,5} The tetrameric K^+ channel has a four-fold rotational symmetry axis along its central ion pathway. There is a wide cavity (C) near the intracellular entryway and a narrow passageway, called the selectivity filter (S) on the extracellular side (Figure 1a). The cavity is lined by hydrophobic amino acids and a single K^+ ion lies at the center of the cavity in fully hydrated form surrounded by eight water molecules in square antiprismatic arrangement. The selectivity filter contains four ion binding sites. Sites 1 - 3 are formed by carbonyl oxygens of the protein backbone, with square antiprismatic coordination geometry around each K^+ ion. Site 4 is formed by carbonyl oxygens and oxygens of the threonine

hydroxyl groups, and it has a cubic coordination geometry around the K^+ ion. (Figure 1b). It is believed that the smaller Na^+ ion is excluded as the oxygen atoms of the selectivity filter cannot come close enough to coordinate the Na^+ ion.^{3,5}

Although the selectivity filter contains four ion binding sites, it is highly improbable that four K^+ ions could be present at the same time, since they would be separated by a distance of ~ 3.3 Å. Studies by Zhou *et. al* have shown that at a given time there is an average of two ions in the selectivity filter and therefore the electron density in positions 1-4 represents the superposition of K^+ ions in the 1,3 and 2,4 configurations which are considered to be equal in energy (Figure 2). ^{5,6} It is believed that ion conduction takes place when a queue of K^+ ions and water molecules move through the filter in a concerted manner and that an exchange between the two configurations occurs when a third ion enters from the intracellular side, pushing the outermost ion to exit. ^{6,7} The transition between 1,3 and 2,4 configuration possibly occurs via an intermediate in which each K^+ ion is coordinated in an octahedral manner with four coordination sites occupied by carbonyl oxygens and two sites occupied by water molecules.

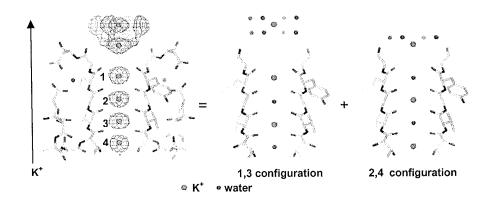


Figure 2: Configurations of the selectivity filter in the KcsA K⁺ channel²

lectrophysiological studies of ion conduction show that the KscA K^+ channels are readily permeable to K^+ and its close analogs like Rb^+ , NH_4^+ and Tl^+ , whereas Na^+ , Li^+ and Cs^+ are excluded. 8 It is believed that the larger Cs^+ ion can block the filter.

All potassium channels are gated, that is, ion conduction can be turned on and off in the presence of a stimulus such as voltage, pH, and ligand binding. 2,9 The gate is formed by the inner helices on the intracellular side (Figure 1a). The mechanism of gating is a major area of current research on ion channels. Synthetic analogs of ion channels are being widely investigated and K^+ selective channels have been developed based on resorcin[4]arenes and cholic acid derivatives that can conduct ions across a lipid bilayer.

References

- 1. Hille, B. Ionic Channels of Excitable Membranes; 2nd Ed., Sinauer Associates, Massachusettes, 1992.
- 2. MacKinnon, R. "Potassium channels and the atomic basis of selective ion conduction (Nobel lecture)," *Angew. Chem. Int. Ed.* **2004**, *43*, 4265-4277.
- 3. Doyle, D. A.; Cabral, J. M.; Pfuetzner, R. A.; Kuo, A.; Gulbis, J. M.; Cohen, S. L.; Chait, B. T.; MacKinnon, R. "The structure of the potassium channel: molecular basis of K+ conduction and selectivity," *Science* **1998**, *280*, 69-77.
- 4. Jiang, Y.; Lee, A.; Chen, J.; Cadene, M.; Chait, B. T.; MacKinnon, R. "The open pore conformation of potassium channels," *Nature* **2002**, *417*, 523-526.
- 5. Zhou, Y.; Morals-Cabral, J. H.; Kaufman, A.; MacKinnon, R. "Chemistry of ion coordination and hydration revealed by a K⁺ channel-Fab complex at 2.0 Å resolution," *Nature* **2001**, *414*, 43-48.
- 6. (a) Zhou, Y.; MacKinnon, R. "The occupancy of ions in the K⁺ selectivity filter: Charge balance and coupling of ion binding to a protein conformational change underlie high conduction rate," *J. Mol Biol.* **2003**, *333*, 965-975. (b) Morals-Cabral, J. H.; Zhou, Y.; MacKinnon, R. "Energetic optimization of ion conduction rate by the K⁺ selectivity filter," *Nature* **2001**, *414*, 37-42.
- 7. Berneche, S.; Roux, B. "Energetics of ion conduction through K⁺ channel," *Nature* **2001**, *414*, 73-77.
- 8. (a) LeMasurier, M.; Heginbotham, L.; Miller, C. "KscA: it's a potassium channel," *J. Gen. Physiol.* **2001**, *118*, 303-313. (b) Nimigean, C. M.; Miller, C. "Na⁺ block and permeation in a K⁺ channel of known structure," *J. Gen. Physiol.* **2002**, *120*, 323-335. (c) Heginbotham, L.; LeMasurier, M.; Kolmakova-Partensky, L.; Miller, C. "Single Streptomyces lividans K⁺ channels: functional asymmetries and sidedness of proton activation," *J. Gen. Physiol.* **1999**, *114*, 551-559.
- 9. Jiang, Y.; Lee, A.; Chen, J.; Ruta, V.; Cadene, M.; Chait, B. T.; MacKinnon, R. "X-ray structure of a voltage dependent K⁺ channel," *Nature* **2003**, *423*, 33-41.
- 10. (a) Wright, A. J.; Matthews, S. E.; Fischer, W. B.; Beer, P. D. "Novel resorcin[4]arenes as potassium-selective ion-channel and transporter mimics," *Chem. Eur. J.* **2001**, 7, 3474-3481. (b) Yoshino, N.; Satake, A.; Kobuke, Y. "An artificial ion channel formed by a macrocyclic resorcin[4]arene with amphiphilic cholic acid ether groups," *Angew. Chem., Int. Ed.* **2001**, 40, 457-459. (c) Tanaka, Y.; Kobuke, Y.; Sokabe, M. "A non-peptidic ion channel with K⁺ selectivity," *Angew. Chem. Int. Ed.* **1995**, 34, 693-694. (d) 14. Kobuke, Y.; Nagatani, T. "Transmembrane ion channels constructed of cholic acid derivatives," *J. Org. Chem.* **2001**, 66, 5094-5101.