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INTRODUCTION

Many natural products contain Z alkene moieties and the stereochemical identity of these alkenes
can significantly impact their respective biological activities. Several synthetic approaches to generate
disubstituted Z alkenes exist, such as the Wittig reaction, catalytic hydrogenation, and transition metal
catalyzed cross-coupling reactions. However, each approach has limitations and drawbacks. As a result,
an efficient and general route to selectively generate Z alkenes would be synthetically useful.
DEVELOPMENT OF MONOARYLOXIDE-PYRROLIDE (MAP) CATALYST

There have been a number of preliminary studies preceding the development
of the Z-selective cross-metathesis. In the past five years, the monoaryloxide-
pyrrolide (MAP) molybdenum catalyst (Figure 1) has been developed by Schrock
and Hoveyda to achieve enantioselective metathesis.”> With mechanistic
understanding of enantioselective metathesis, they recognized that they could

achieve better objective — Z selectivity in alkene metathesis reactions. As a result,

Z-selective and enantioselective ring-opening/cross-metathesis (ROCM) was

Figure 1. MAP Mo catalyst

developed.® Mechanistic studies on the relationship of catalyst structure with high selectivity in Z alkene

formation proved that the flexibility of the bulky monoaryloxide ligand was critical.*> Z-Selective
homocoupling was achieved through variation of MAP ligands.®
Z-SELECTIVE CROSS-METATHESIS

A major challenge in alkene cross-metathesis Cross-coupled Homocoupled
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substrates to achieve high efficiency.”® Under thiS rigure 2. possiblc outcomes of a crossmetathesis (M) and the desired product
condition, metathesis is highly E-selective due to thermodynamic control. Additional limitation about
this approach is when a valuable substrate is employed.

Schrock and Hoveyda demonstrated the first highly Z-selective alkene cross-metathesis of

aliphatic alkenes with use of an excess of enol ethers or allylic amides.® Due to electronic factors, the
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reduced pressure to remove ethylene as it was formed  rigures3. z-Selective CM of CI8 (plasm)-16:0 (PC) intermediate.
(Figure 3). Removal of ethylene was critical because it was not only detrimental to the rate of cross-
metathesis but its presence was the main contributor to alkene isomerization.
Z-SELECTIVE MACROCYCLIC RING-CLOSING METATHESIS

Another major advance in this field is the development of Z-selective macrocyclic ring-closing
metathesis.'* While formation of Z alkenes is exclusive with small or medium sized rings, it is very
difficult to generate Z alkenes for larger rings due to a much diminished thermodynamic preference.

Because ring-closure is intramolecular, the employment of

excess amount of one substrate could not be applied toward
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increased selectivity. Conventional approaches to the
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Figure 4. Z-Selective catalytic RCM of nakadomarin A intermediate - CONCeNtrations. However, by employing the attenuated
derivative of W-based MAP catalyst, Z-selective 15- and 16-membered ring closures of up to 0.1 M
solutions were accomplished (Figure 4).

CONCLUSION

Recent developments from Schrock and Hoveyda’s collaboration provide a unique solution to
the Holy Grail in the field of alkene metathesis. These metathesis reactions were possible with the
development of MAP catalysts. Mechanistic analysis of the catalyst-substrate transition state structure
was vital toward the development of Z alkene selective reaction systems. Because a large number of
biologically active compounds have macrocyclic Z alkene or moieties that can be obtained from
stereoselective transformation of a Z alkene, the ability to selectively form Z alkene is sure to be a
powerful tool to synthetic chemists.
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