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Many important industrial processes involve C-0 bond formation, including the syn
thesis of acetone from propylene over a mixed Sn(h-Mo03 metal surface [1,2] and the oxida
tion of ethylene to ethylene oxide over a Ag-based catalyst [3]. As opposed to the numerous 
C-0 bond making processes, there are relatively few reaction classes that have been incorpo
rated into industrial processes which involve the breaking of a C-0 bond. One example is the 
Fischer-Tropsch process, which converts synthesis gas (CO/H2) to a broad spectrum of com
pounds. These range from complex hydrocarbon mixtures to various kinds of oxygenates [4]. 

To gain a better understanding of the possible species which might be involved in C-0 
bond formation processes, many groups are currently studying the mechanism(s) of these re
actions. In particular, olefin epoxidation via metal-oxo with macrocyclic ligands is under active 
investigation [5]. 

Kilty [6] and Santen [7] have independently studied the oxidation of ethylene over a Ag 
surface which has been prea.dsorbed with molecular oxygen. Both have postulated that the key 
to forming ethylene oxide selectively is in how the molecular oxygen is adsorbed onto the metal 
surface. However, neither addressed the issue of the possible intermediates or transition 
structures which could be involved in such a reaction. Four possible mechanisms are outlined 
in Scheme I. These include a direct oxygen abstraction in a concerted manner, fonnation of an 
oxametallacycle, involvement of a 1,4 biradical, or of a zwitterionic species [5,8]. 

From the principle of microscopic reversibility, these mechanisms are also relevant to 
metal mediated oxygen atom abstraction from epoxdies. Several groups have engaged in 
studying deoxygenation of epoxides by activating the C-0 bond with different transition metal 
complexes. In 1989, Bergman and co-workers postulated an alternate mechanism to those in 
Scheme I, involving initial C-H activation by the metal complex by inserting into the C-H 
bond of the epoxide. The metalated epoxide is then observed to undergo rearrangement to give 
the corresponding enolate species [9]. 

Moloy [10], Mayer [11], and Bercaw [8] have each independently investigated the 
mechanism of deoxygenation reactions. Mechanistic data presented by both Mayer and Bercaw 
groups have provided convincing evidence that their systems probably do not proceed through 
any long-lived intermediates such as oxametallacycles, but rather they involve concerted reac
tions. These observations are in accord with Jorgensen's theoretical calculations [12]. 

C-0 bond activation in other oxygen-containing substrates have also been studied in 
recent years. These substrates include ketones [13-15], carbon dioxide [16-18], and esters 
[19-21]. 

The reaction of WCl2(PMePh2)4 with ketones is remarkable in several respects. First, 
relatively strong C-0 double bond (-150 kcal/mole) is simply cleaved to two divalent frag
ments which remain coordianted to the same metal center. Second, this is formally a four elec
tron oxidative addition reaction which occurs under mild conditions. Third, the reaction con
trasts with typical reduction of ketones by metals, which leads to pinacolates and olefins via C
C coupling. Finally, this process is loosely analogous to the reverse of an ozonolysis of an 
alkene. 
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Reactions of esters by Yamamoto [19-20] and Ito [21] have shown that the scission of 
the carboxylic ester bond is dependent on the nature of the ester. Two types of cleavage, a- or 
J3-cleavage relative to the carbonyl unit, are possible. 

In conclusion, the results and mechanistic insights presented here regarding the deoxy
genation of oxygen-containing substrates should form the basis for a better understanding of 
the mechanism(s) for C-0 bond forming processes. 

Scheme I 
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