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Polysilanes have attracted considerable attention due to their novel electronic proper-
ties and their importance as polymeric SiC precursors [1,2]. However, it was not until the
1980’s, that researchers found synthetic routes to soluble, high molecular weight polymers
[3,4]. Until then, the synthesis of polysilanes involved the use of Wurtz-Fittig type coupling
reactions using Na metal in toluene or xylene at a temperature greater than 100°C. This
method is quite dangerous [5-7]. In 1985, Harrod’s exciting discovery of the polymerization
of primary silane monomers at room temperature using Cp2TiR2 (Cp = n3-cyclopentadienyl,
R = CH3 or C¢HsCH») catalysts with Ha(g) as a by-product [8] has led to the interest in tran-
sition metal catalyzed dehydropolymerization reactions.

Several mechanisms have been proposed to describe the silane dehydropolymeriza-
tion: silene intermediates [9, 10], oxidative addition-reductive elimination [11], and 6-bond
metathesis [12, 13, 21] (Figure 1). o-bond metathesis reactions via a four-center transition
state Have been studied intensely for the activation of C-H bonds in unsaturated and saturated
hydrocarbons by group 3 and 4 transition metals [14-16]. Experimental-evidence has led to
the conclusion that o-bond metathesis is the favored mechanism for dehydropolymerization of
silanes [17-19]. The mechanism involves two steps: (1) dehydrometalation of a silane,
H(SiHR) H (R = alkyl or aryl), with an early transition metal hydride and (2) coupling of the
metal silyl derivative with more hydrosilane, H(SiHR)yH, to regenerate the early transition
metal hydride catalyst.
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Figure 1. ¢-bond metathesis mechanism (M = group 4 transition metal with
CpCp*X or Cp2X ligands where Cp = n5-cyclopentadienyl, Cp* =
n°-pentamethylcyclopentadienyl, X = Cl or Me; R = alkyl, aryl, or silyl).

Mechanistic studies have been performed using 1H NMR, 29Si NMR, 13C NMR, IR,
and x-ray diffraction techniques. Treatment of CpCp*(CI)MH, where Cp = n3- cyclopentadi-
enyl, Cp* = n°-pentamethylcyclopentadienyl, and M = Zr or Hf, with PhSiH3 formed
CpCp*(C1)MSiH,Ph [17, 18]. This reaction provided evidence for M-Si bond formation.
Thermal decomposition of CpCp*(CI)HfSiH2Ph and the reaction of CpCp*(CI)MSiH,Ph with
PhSiH3 provided evidence for Si-Si bond formation [17,18]. This mechanistic study led to
better understanding of how silane substituents, choice of transition metal, and choice of
transition metal ligands affect the polymerization reaction.

28



% Wolght (ArdRrary Unns)

The effectiveness of transition metal complexes as catalysts was determined from the
molecular weight distributions of the polysilanes formed. The polysilanes created by o-bond
metathesis reactions were monitored using gel permeation chromatography (GPC) and a

refractive index detector. Reactions of CpCp*Zr(Si(SiMc3)3)Me with PhSiH3 and CpCp*Zr-

(Si(SiMe3)3)Cl with PhSiH3 demonstrated different molecuiar weight distributions [20]. The

choice of ligand (L) in CpCp*Zr(Si(SiMe3)3)L affected the molecular weight distribution, with
stronger n-donors decreasing the activity of the catalyst (Figure 2). The CpCp*Zr(Si(SiMe3)3)-
Me and Cp2Zr(Si(SiMe3)3)Me catalysts gave different molecular weight distributions, with the
CpCp* ligand set being more effective than the Cp; ligand set [20]. Also, the molecular weight
distributions were affected by the choice of early transition metal and silane monomer concen-

tration [20].
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Figure 2. Molecular weight distributions for (SiHPh);, catalyzed by
(a) CpCp*Zr[Si(SiMe3)3]Me and (b) CpCp*Zr[Si(SiMe3)3]CL

Room temperature syntheses of polysilanes are useful for several technological appli-
cations: (1) precursors to SiC, (2) microlithography, and (3) photoinitiation of vinyl poly-
merizations [6,7, 22]. However, the most interesting aspect of polysilanes is their ability to
absorb light in the UV region (200-350 nm) with extinction coefficients that vary from 5,000
to 60,000 L mol-! cm-! [6,7]. The nature of these Si-Si 6-6* electronic transitions is affected
by the number and the type of substituents on the Si backbone [1,7].

Transition metal complexes as catalysts provide a room temperature route to polysi-
lanes. The mechanism of the dehydropolymerization involves o-bond metathesis reactions
that occur via four-center transition states. The molecular weight distributions of the resulting
polysilanes are dependent upon the choice of early transition metal, CpCp* or Cp, ligand set,
n ligand on the metal, and concentration of silane monomer present.
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