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Oxygen, which is essential to all animal life on earth, is produced by plants by the 
oxidation of water. This process is catalyzed by a tetranuclear manganese enzyme known as 
the oxygen evolution center [1]. The oxygen evolution center is present in the part of the 
photosynthetic apparatus known as photosystem II and is believed to reside near the reaction 
center. The enzyme is believed to contain three polypeptides (17, 23, and 33 KDa) [2] all of 
which are necessary for oxygen production. In addition to manganese and the peptides, both 
calcium [3] and chloride [4] are essential cofactors, although the roles of these latter ions are 
unclear [5] . 

The catalyzed reaction can be summarized as follows: 

OEC 

In the oxidation of water to oxygen, the electrons are transferred to the reaction center 
(starting at P680-the special pair). The protons diffuse toward the interior of the thylakoid 
membrane where they assist in the formation of ATP. From the plant's viewpoint, oxygen is 
a waste-product. 

Pioneering mechanistic studies of water oxidation were carried out by Kok [ 6] and 
coworkers. Kok examined the maximum yield and rate of oxygen evolution as photosystem 
II was successively exposed to flashes of light It was found that dark-adapted chloroplasts, 
initially in the resting state known as the S 1 state gave a maximal response after the third 
flash of the first cycle and after the fourth flash thereafter. These results led to the proposal 
of the reaction cycle known as the S state mechanism (Figure 1.) 

Figure 1. Model for charge accumulation - the S cycle. 

From the mechanism we see that the oxidation of water to oxygen does not occur until after 
the fourth flash. 

The soucture of the enzyme responsible for water oxidation still remains an enigma 
[7] . X-Ray absorption spectroscopy (XAS) has been used to detennine the oxidation states 
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and local environments of the manganese centers by comparison with XAS data for model 
manganese compounds [8]. The EXAFS (Extended X-ray absorption fine structure) portion 
of the spectrum has revealed the presence of several Mn-Mn and Mn-ligand interactions [9]. 
The presence of calcium at the active site has been confirmed by changes in the EXAFS 
spectrum upon treatment of the enzyme with Sr2+ [3a]. The XANES (X-Ray absorption near 
edge spectrum) portion of the spectrum reveals a change in oxidation state upon going from 
the So to S 1 and from the S 1 to S2 states. However, XANES data indicate that no metal 
centered oxidation occurs during conversion from the S2 to S3 state [9d]. It has been implied 
from XANES data that the oxidation state distribution is Cm(III)(IV)i for So and (III)i(IVh 
for S1. 

Electron paramagnetic resonance spectroscopy (EPR) [10] has been employed to ex­
amine the paramagnetic intermediates in the S cycle. It has been confirmed, by flash experi­
ments [11], that the S2 state is paramagnetic. Two signals have been observed for this state: a 
multi.line signal [10] centered at g = 2, and a g = 4.1 signal [12] with a line width of 320G 
which has been "trapped" at low temperature. Model compounds have assisted in the inter­
pretation of the multiline signal [13]. 

The g = 4.1 signal converts to the multiline signal when the samples are warmed to 
190K. Ammonia stabilized samples show complex hyperfine structure which implies a 
multi.nuclear origin for this signal. The ground spin states of the manganese centers respon­
sible for the two signals are 1/2 and 5/2, respectively. The signal is attributed to a conforma­
tionally induced change in the spin state of the tetranuclear manganese cluster. EPR spectra 
of Ca2+ depleted samples reveal that a histidine residue is oxidized [14] during the S2 to S3 
transition, a conclusion that is consistent with the XANES data. Figure 2 shows the proposed 
structure of the complex. 
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Figure 2. Proposed model for the active site of the OEC. 

The structure [9A] is consistent with both EXAFS and EPR data. It can be viewed as a dimer 
of dimers which can exist in a variety of oxidation states as the enzyme catalyzes the 
oxidation of water. 

The binding or presence of nitrogenous ligands and amino acids has been examined 
by a pulse EPR technique known as ESEEM [15] (electron spin echo envelope modulation 
spectroscopy), which can measure super hyperfine and quadrupolar interactions. The 
ESEEM data confirm that ammonia binds [16] to manganese in the S2 state. Furthermore, 
the magnitudes of the quadrupolar couplings have implied that ammonia is deprotonated and 
exists as an amido species. Finally ESEEM data confinn (by isotopic labeling) that nitroge­
nous amino acids [17], such as histidine, are directly ligated to manganese. 
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